183 resultados para anticancer antibiotics
Resumo:
Organic solvents are widely used in a range of multiphase bioprocess operations including the liquid-liquid extraction of antibiotics and two-phase biotransformation reactions. There are, however, considerable problems associated with the safe handling of these solvents which relate to their toxic and flammable nature. In this work we have shown for the first time that room-temperature ionic liquids, such as 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], can be successfully used in place of conventional solvents for the liquid-liquid extraction of erythromycin-A and for the Rhodococcus R312 catalyzed biotransformation of 1,3-dicyanobenzene (1,3-DCB) in a liquid-liquid, two-phase system. Extraction of erythromycin with either butyl acetate or [bmim][PF6] showed that values of the equilibrium partition coefficient, K, up to 20-25 could be obtained for both extractants. The variation of K with the extraction pH was also similar in the pH range 5-9 though differed significantly at higher pH values. Biotransformation of 1,3-DCB in both water-toluene and water-[bmim][PF6] systems showed similar profiles for the conversion of 1,3-DCB initially to 3-cyanobenzamide and then 3-cyanobenzoic acid. The initial rate of 3-cyanobenzamide production in the water-[bmim][PF6] system was somewhat lower, however, due to the reduced rate of 1,3-DCB mass transfer from the more viscous [bmim] [PF,] phase. it was also shown that the specific activity of the biocatalyst in the water-[bmim][PF6] system was almost an order of magnitude greater than in the water-toluene system which suggests that the rate of 3-cyanobenzamide production was limited by substrate mass transfer rather than the activity of the biocatalyst. (C) 2000 John Wiley & Sons, Inc.
Resumo:
This study compares conventional and molecular techniques for the detection of fungi in 77 adult cystic fibrosis (CF) patients. Three different methods were investigated, i.e., (1) conventional microbiological culture (including yeasts and filamentous fungi), (2) mycological culture with CF-derived fungal specific culture media, and (3) Non-culture and direct DNA extraction from patient sputa. Fungi isolated from environmental air samples of the CF unit were compared to fungi in sputa from CF patients. Fungi (n = 107) were detected in 14/77(18%) of patients by method 1, in 60/77 (78%) of patients by method 2 and with method 3, in 77/77(100%) of the patients. The majority of yeasts isolated were Candida albicans and C. dubliniensis. Exophiala (Wangiella) dermatitidis, Scedosporiumapiospermum, Penicillium spp., Aspergillus fumigatus, and Aspergillus versicolor were also identified by sequence analysis of the rDNA short internal transcribed spacer (ITS2) region. Conventional laboratory analysis failed to detect fungi in 63 patients mainly due to overgrowth by Gram-negative organisms. Mycological culture with antibiotics dramatically increased the number of fungi that could be detected. Molecular techniques detected fungi such as Saccharomyces cerevisiae, Malassezia spp., Fuscoporia ferrea, Fusarium culmorum, Acremonium strictum, Thanatephorus cucumeris and Cladosporium spp. which were not found with other methods. This study demonstrates that several potentially important fungi may not be detected if mycological culture methods alone are used. A polyphasic approach employing both enhanced mycological culture with molecular detection will help determine the presence of fungi in the sputa of patients with CF and their healthcare environment.
Resumo:
Yeasts and filamentous fungi are beginning to emerge as significant microbial pathogens in patients with cystic fibrosis (CF), particularly in relation to allergic-type responses, as seen in patients with allergic bronchopulmonary aspergillosis (ABPA), Aspergillus bronchitis and in invasive fungal disease in lung transplant patients. Four fungal media were compared in this study, including Sabouraud Dextrose Agar (SDA) and Medium B, with and without the addition of selective antibiotics, where antibiotic-supplemented media were designated with (+). These media were compared for their ability to suppress contaminating, mainly Gram-ve pathogens, in CF sputa (Pseudomonas aeruginosa, Burkholderia cepacia complex [BCC] organisms) and to enhance the growth of fungi present in CF sputum. Medium B consisted of glucose (16.7 g/l), agar (20 g/l), yeast extract (30 g/l) and peptone (6.8 g/l) at pH 6.3 and both SDA(+) and Medium B+ were supplemented with cotrimethoxazole, 128 mg/l; chloramphenicol, 50 mg/l; ceftazidime, 32 mg/l; colistin, 24 mg/l). Employment of SDA(+) or Medium B+ allowed an increase in specificity in the detection of yeasts and moulds, by 42.8% and 39.3%, respectively, over SDA when used solely. SDA(+) had a greater ability than Medium B+ to suppress bacterial growth from predominantly Gram-ve co-colonisers. This is a significant benefit when attempting to detect and isolate fungi from the sputum of CF patients, as it largely suppressed any bacterial growth, with the exception of the BCC organisms, thus allowing for an increased opportunity to detect target fungal organisms in sputum and represented a significant improvement over the commercial medium (SDA), which is currently used. Overall, both novel selective media were superior in their ability to suppress bacteria in comparison with the commercially available SDA medium, which is routinely employed in most clinical microbiology diagnostic laboratories presently. Alternatively, Medium B+ had a great ability to grow fungi than SDA(+) and when employed together, the specificity of combined use was 82%, with a sensitivity for yeasts, filamentous fungi, and combined overall fungi of 96.0%, 92.3% and 96.0%, respectively. Overall, when employing one fungal selective medium for the routine detection of yeasts and filamentous fungi in the sputum of CF patients, we would recommend employment of Medium B+. However, we would recommend the combined employment of SDA(+) and Medium B+, in order to synergistically isolate and detect the greatest number of fungi present in CF sputa. (C) 2008 European Cystic Fibrosis Society. Published by Elsevier B.V All rights reserved.
Resumo:
Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen worldwide. A wide range of factors have been suggested to influence the spread of MRSA. The objective of this study was to evaluate the effect of antimicrobial drug use and infection control practices on nosocomial MRSA incidence in a 426-bed general teaching hospital in Northern Ireland.
Methods: The present research involved the retrospective collection of monthly data on the usage of antibiotics and on infection control practices within the hospital over a 5 year period (January 2000–December 2004). A multivariate ARIMA (time-series analysis) model was built to relate MRSA incidence with antibiotic use and infection control practices.
Results: Analysis of the 5 year data set showed that temporal variations in MRSA incidence followed temporal variations in the use of fluoroquinolones, third-generation cephalosporins, macrolides and amoxicillin/clavulanic acid (coefficients = 0.005, 0.03, 0.002 and 0.003, respectively, with various time lags). Temporal relationships were also observed between MRSA incidence and infection control practices, i.e. the number of patients actively screened for MRSA (coefficient = -0.007), the use of alcohol-impregnated wipes (coefficient = -0.0003) and the bulk orders of alcohol-based handrub (coefficients = -0.04 and -0.08), with increased infection control activity being associated with decreased MRSA incidence, and between MRSA incidence and the number of new patients admitted with MRSA (coefficient = 0.22). The model explained 78.4% of the variance in the monthly incidence of MRSA.
Conclusions: The results of this study confirm the value of infection control policies as well as suggest the usefulness of restricting the use of certain antimicrobial classes to control MRSA.
Resumo:
This study aimed to determine the effect of sub-lethal challenge with Photodynamic Antimicrobial Chemotherapy (PACT) on the susceptibility of clinical Staphylococcus aureus and Pseudomonas aeruginosa isolates to both PACT and a range of antibiotics used in the treatment of infection caused by these bacteria. Clinical S. aureus and P. aeruginosa isolates were exposed to sub-lethal PACT with meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP) and methylene blue (MB) over a 72 h period. After exposure, susceptibility of surviving organisms to a range of antibiotics was determined and compared with the susceptibility of an untreated control. Surviving bacteria were also exposed to previously lethal photosensitizer-light combinations, to determine if susceptibility to PACT was affected by sub-lethal exposure. Exposure to sub-lethal PACT did not decrease susceptibility to antibiotics with the minimum inhibitory concentrations for 95% and 100% of P. aeruginosa and S. aureus isolates, respectively, within two doubling dilutions of the MIC of the untreated control. Similarly, habituation with sub-lethal PACT did not reduce susceptibility of P. aeruginosa isolates to PACT levels previously determined as lethal. A reduction in susceptibility to PACT following habituation was apparent for two S. aureus isolates with MB and for 1 S. aureus isolate with IMP. However, for two of these three isolates, the log reduction for habituated cells was still greater than 4 log(10). PACT remains an attractive potential treatment for infection caused by these bacteria. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An in vitro method of determining the activity of antibiotics in combination which is simple and convenient to perform and which could be used routinely in clinical microbiology laboratories is desirable. We investigated the activity, against Pseudomonas aeruginosa and Burkholderia cepacia complex clinical isolates, of ceftazidime and tobramycin in combination using a broth macrodilution sensitivity method based on breakpoint minimum inhibitory concentrations and compared the results obtained using this method with those obtained using the microtitre checkerboard method. There was good agreement in interpretation of results between the two methods for both P. aeruginosa (90%) and B. cepacia complex isolates (70%) with tobramycin and for P. aeruginosa isolates (70%) with ceftazidime. As the breakpoint combination sensitivity testing method employs only four tubes and does not require initial determination of individual antibiotic minimum inhibitory concentrations, it is simpler and more convenient for determining the activity of antibiotics in combination than the microtitre checkerboard method. The use of this method in routine microbiology laboratories to determine the activity of antibiotic combinations against clinical isolates should optimise treatment of infection by ensuring that appropriate antibiotic combinations are prescribed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A colorimetric assay based on the reduction of a tetrazolium salt {2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT)} for rapidly determining the susceptibility of Pseudomonas aeruginosa isolates to bactericidal antibiotics is described. There was excellent agreement between the tobramycin and ofloxacin MICs determined after 5 h using the XTT assay and after 18 h using conventional methods. The data suggests that an XTT-based assay could provide a useful method for rapidly determining the susceptibility of P. aeruginosa to bactericidal antibiotics.
Resumo:
The objective of this study was to evaluate the effects of antimicrobial drug use, gastric acid-suppressive agent use, and infection control practices on the incidence of Clostridium difficile-associated diarrhea (CDAD) in a 426-bed general teaching hospital in Northern Ireland. The study was retrospective and ecological in design. A multivariate autoregressive integrated moving average (time-series analysis) model was built to relate CDAD incidence with antibiotic use, gastric acid-suppressive agent use, and infection control practices within the hospital over a 5-year period (February 2002 to March 2007). The findings of this study showed that temporal variation in CDAD incidence followed temporal variations in expanded-spectrum cephalosporin use (average delay = 2 months; variation of CDAD incidence = 0.01/100 bed-days), broad-spectrum cephalosporin use (average delay = 2 months; variation of CDAD incidence = 0.02/100 bed-days), fluoroquinolone use (average delay = 3 months; variation of CDAD incidence = 0.004/100 bed-days), amoxicillin-clavulanic acid use (average delay = 1 month; variation of CDAD incidence = 0.002/100 bed-days), and macrolide use (average delay = 5 months; variation of CDAD incidence = 0.002/100 bed-days). Temporal relationships were also observed between CDAD incidence and use of histamine-2 receptor antagonists (H2RAs; average delay = 1 month; variation of CDAD incidence = 0.001/100 bed-days). The model explained 78% of the variance in the monthly incidence of CDAD. The findings of this study highlight a temporal relationship between certain classes of antibiotics, H2RAs, and CDAD incidence. The results of this research can help hospitals to set priorities for restricting the use of specific antibiotic classes, based on the size-effect of each class and the delay necessary to observe an effect.
Resumo:
Purpose: We have shown previously that exposure to anticancer drugs can trigger the activation of human epidermal receptor survival pathways in colorectal cancer (CRC). In this study, we examined the role of ADAMs (a disintegrin and metalloproteinases) and soluble growth factors in this acute drug resistance mechanism.
Experimental Design: In vitro and in vivo models of CRC were assessed. ADAM-17 activity was measured using a fluorometric assay. Ligand shedding was assessed by ELISA or Western blotting. Apoptosis was assessed by flow cytometry and Western blotting.
Results: Chemotherapy (5-fluorouracil) treatment resulted in acute increases in transforming growth factor-a, amphiregulin, and heregulin ligand shedding in vitro and in vivo that correlated with significantly increased ADAM-17 activity. Small interfering RNA–mediated silencing and pharmacologic inhibition confirmed that ADAM-17 was the principal ADAM involved in this prosurvival response. Furthermore, overexpression of ADAM-17 significantly decreased the effect of chemotherapy on tumor growth and apoptosis. Mechanistically, we found that ADAM-17 not only regulated phosphorylation of human epidermal receptors but also increased the activity of a number of other growth factor receptors, such as insulin-like growth factor-I receptor and vascular endothelial growth factor receptor.
Conclusions: Chemotherapy acutely activates ADAM-17, which results in growth factor shedding, growth factor receptor activation, and drug resistance in CRC tumors. Thus, pharmacologic inhibition of ADAM-17 in conjunction with chemotherapy may have therapeutic potential for the treatment of CRC.
Resumo:
Antibiotics have been the cornerstone of the clinical management of bacterial infections since their discovery in the early part of the last century. Eight decades later, their widespread, often indiscriminate use, has resulted in an overall reduction in their effectiveness, with reports of multidrug-resistant bacteria now commonplace. Increasing reliance on indwelling medical devices, which are inherently susceptible to biofilm-mediated infections, has contributed to unacceptably high rates of nosocomial infections, placing a strain on healthcare budgets. This study investigates the use of lytic bacteriophages in the treatment and prevention of biofilms of bacterial species commonly associated with infections of indwelling urological devices and catheter-associated urinary tract infections. The use of lytic bacteriophages against established biofilms of Proteus mirabilis and Escherichia coli is described, whereby biofilm populations have been reduced successfully by three to four log cycles (99.9-99.99% removal). The prevention of biofilm formation on Foley catheter biomaterials following impregnation of hydrogel-coated catheter sections with a lytic bacteriophage has also been investigated. This has revealed an approximate 90% reduction in both P. mirabilis and E. coli biofilm formation on bacteriophage-treated catheters when compared with untreated controls.
Resumo:
INTRODUCTION: Bronchiolitis is the most common lower respiratory tract infection in infants, occurring in a seasonal pattern, with highest incidence in the winter in temperate climates and in the rainy season in warmer countries. Bronchiolitis is a common reason for attendance at and admission to hospital.
METHODS AND OUTCOMES: We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of prophylactic interventions for bronchiolitis in high-risk children? What are the effects of measures to prevent transmission of bronchiolitis in hospital? What are the effects of treatments for children with bronchiolitis? We searched: Medline, Embase, The Cochrane Library, and other important databases up to July 2010 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA).
RESULTS: We found 59 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions.
CONCLUSIONS: In this systematic review we present information relating to the effectiveness and safety of the following interventions: antibiotics, bronchodilators (oral, inhaled salbutamol, inhaled adrenaline [epinephrine], hypertonic saline), chest physiotherapy, continuous positive airway pressure, corticosteroids, fluid management, heliox, montelukast, nasal decongestants, nursing interventions (cohort segregation, hand washing, gowns, masks, gloves, and goggles), oxygen, respiratory syncytial virus immunoglobulins, pooled immunoglobulins, or palivizumab (monoclonal antibody), ribavirin, or surfactants.
Resumo:
Plasma cell polyps of the vocal fold (plasma cell granulomas) are rare inflammatory polyps of the larynx. They should be included in the clinical and histological differential diagnosis of laryngeal polyps. Histologically they are polyclonal aggregates of plasma cells. It is essential to distinguish them from monoclonal, neoplastic plasma cell proliferations. The treatment of choice is surgical resection, although radiotherapy, laser ablation, antibiotics and steroids have been used successfully. We present a case of plasma cell granuloma presenting as a vocal fold polyp, treated surgically.
Resumo:
Direct pharmacological targeting of the anti-apoptotic B-cell lymphoma-2 (BCL-2) family is an attractive therapeutic strategy for treating cancer. Obatoclax is a pan-BCL-2 family inhibitor currently in clinical development. Here we show that, although obatoclax can induce mitochondrial apoptosis dependent on BCL-2 associated x protein/BCL-2 antagonist killer (BAX/BAK) consistent with its on-target pharmacodynamics, simultaneous silencing of both BAX and BAK did not abolish acute toxicity or loss of clonogenicity. This is despite complete inhibition of apoptosis. Obatoclax dramatically reduced viability without inducing loss of plasma membrane integrity. This was associated with rapid processing of light chain-3 (LC3) and reduction of S6 kinase phosphorylation, consistent with autophagy. Dramatic ultrastructural vacuolation, not typical of autophagy, was also induced. Silencing of beclin-1 failed to prevent LC3 processing, whereas knockout of autophagy-related (Atg) 7 abolished LC3 processing but failed to prevent obatoclax-induced loss of clonogenicity or ultrastructural changes. siRNA silencing of Atg7 in BAX/BAK knockout mouse embryonic fibroblasts did not prevent obatoclax-induced loss of viability. Cells selected for obatoclax resistance evaded apoptosis independent of changes in BCL-2 family expression and displayed reduced LC3 processing. In summary, obatoclax exhibits BAX- and BAK-dependent and -independent mechanisms of toxicity and activation of autophagy. Mechanisms other than autophagy and apoptosis are blocked in obatoclax resistant cells and contribute significantly to obatoclax's anticancer efficacy. Cell Death and Disease (2010) 1, e108; doi:10.1038/cddis.2010.86; published online 16 December 2010
Resumo:
Background: Pulmonary exacerbations (PEx) are responsible for much of the morbidity and mortality associated with cystic fibrosis (CF). However, there is a paucity of data on outcomes in CF PEx and factors influencing outcomes.
Methods: We reviewed all PEx in patients infected with Pseudomonas aeruginosa treated with parenteral antibiotics over 4 years at our center. Treatment failures were categorized a priori as those PEx requiring antibiotic regimen change, prolongation of therapy > 20 days because of failure to respond, an early recurrent event within < 45 days, or failure to recover lung function to > 90% of baseline FEV1.
Results: A total of 101 patients were followed for 452 PEx. Treatment failures were observed in 125 (28%) of PEx; antibiotic regimen change was observed in 27 (6%), prolongation of therapy in 29 (6%), early recurrent events in 63 (14%), and failure to recover lung function to > 90% of baseline FEV1 in 66 (15%). Demographic factors associated with one or more treatment failures per year included advanced airways disease, use of enteric feeds, CF-related diabetes, and CF liver disease but did not include female sex or F508del homozygosity. Increased treatment failure risk was associated with lower admission FEV1 and increased markers of inflammation. At therapeutic completion, increased inflammatory markers correlated with treatment failure. Failure rates decreased with increasing number of active antimicrobial agents used based on in vitro susceptibility (zero, 28/65 [43%]; one, 38/140 [27%]; two, 59/245 [24%]; three, 0/2 [0%]; P = .02).
Conclusions: One-fourth of PEx fail to respond adequately to initial management. Patient demographic and episode-specific clinical information can be used to identify individuals at increased risk of initial management failure.