70 resultados para adrenal gland
Resumo:
Evidence that some of the fungal metabolites present in food and feed may act as potential endocrine disruptors is increasing. Enniatin B (ENN B) is among the emerging Fusarium mycotoxins known to contaminate cereals. In this study, the H295R and neonatal porcine Leydig cell (LC) models, and reporter gene assays (RGAs) have been used to investigate the endocrine disrupting activity of ENN B. Aspects of cell viability, cell cycle distribution, hormone production as well as the expression of key steroidogenic genes were assessed using the H295R cell model. Cell viability and hormone production levels were determined in the LC model, while cell viability and steroid hormone nuclear receptor transcriptional activity were measured using the RGAs. ENN B (0.01–100 μM) was cytotoxic in the H295R and LC models used; following 48 h incubation with 100 μM. Flow cytometry analysis showed that ENN B exposure (0.1–25 μM) led to an increased proportion of cells in the S phase at higher ENN B doses (>10 μM) while cells at G0/G1 phase were reduced. At the receptor level, ENN B (0.00156–15.6 μM) did not appear to induce any specific (ant) agonistic responses in reporter gene assays (RGAs), however cell viability was affected at 15.6 μM. Measurement of hormone levels in H295R cells revealed that the production of progesterone, testosterone and cortisol in exposed cells were reduced, but the level of estradiol was not significantly affected. There was a general reduction of estradiol and testosterone levels in exposed LC. Only the highest dose (100 μM) used had a significant effect, suggesting the observed inhibitory effect is more likely associated with the cytotoxic effect observed at this dose. Gene transcription analysis in H295R cells showed that twelve of the sixteen genes were significantly modulated (p < 0.05) by ENN B (10 μM) compared to the control. Genes HMGR, StAR, CYP11A, 3βHSD2 and CYP17 were downregulated, whereas the expression of CYP1A1, NR0B1, MC2R, CYP21, CYP11B1, CYP11B2 and CYP19 were upregulated. The reduction of hormones and modulation of genes at the lower dose (10 μM) in the H295R cells suggests that adrenal endocrine toxicity is an important potential hazard.
Resumo:
Introduction: The 'scaly-foot gastropod' (Chrysomallon squamiferum Chen et al., 2015) from deep-sea hydrothermal vent ecosystems of the Indian Ocean is an active mobile gastropod occurring in locally high densities, and it is distinctive for the dermal scales covering the exterior surface of its foot. These iron-sulfide coated sclerites, and its nutritional dependence on endosymbiotic bacteria, are both noted as adaptations to the extreme environment in the flow of hydrogen sulfide. We present evidence for other adaptations of the 'scaly-foot gastropod' to life in an extreme environment, investigated through dissection and 3D tomographic reconstruction of the internal anatomy.
Results: Our anatomical investigations of juvenile and adult specimens reveal a large unganglionated nervous system, a simple and reduced digestive system, and that the animal is a simultaneous hermaphrodite. We show that Chrysomallon squamiferum relies on endosymbiotic bacteria throughout post-larval life. Of particular interest is the circulatory system: Chrysomallon has a very large ctenidium supported by extensive blood sinuses filled with haemocoel. The ctenidium provides oxygen for the host but the circulatory system is enlarged beyond the scope of other similar vent gastropods. At the posterior of the ctenidium is a remarkably large and well-developed heart. Based on the volume of the auricle and ventricle, the heart complex represents approximately 4 % of the body volume. This proportionally giant heart primarily sucks blood through the ctenidium and supplies the highly vascularised oesophageal gland. Thus we infer the elaborate cardiovascular system most likely evolved to oxygenate the endosymbionts in an oxygen poor environment and/or to supply hydrogen sulfide to the endosymbionts.
Conclusions: This study exemplifies how understanding the autecology of an organism can be enhanced by detailed investigation of internal anatomy. This gastropod is a large and active species that is abundant in its hydrothermal vent field ecosystem. Yet all of its remarkable features-protective dermal sclerites, circulatory system, high fecundity-can be viewed as adaptations beneficial to its endosymbiont microbes. We interpret these results to show that, as a result of specialisation to resolve energetic needs in an extreme chemosynthetic environment, this dramatic dragon-like species has become a carrying vessel for its bacteria.
Resumo:
The Transforming Growth Factor-beta (TGFbeta) superfamily of cytokines is comprised of a number of structurally-related, secreted polypeptides that regulate a multitude of cellular processes including proliferation, differentiation and neoplastic transformation. These growth regulatory molecules induce ligand-mediated hetero-oligomerization of distinct type II and type I serine/threonine kinase receptors that transmit signals predominantly through receptor-activated Smad proteins but also induce Smad-independent pathways. Ligands, receptors and intracellular mediators of signaling initiated by members of the TGFbeta family are expressed in the mammary gland and disruption of these pathways may contribute to the development and progression of human breast cancer. Since many facets of TGFbeta and breast cancer have been recently reviewed in several articles, except for discussion of recent developments on some aspects of TGFbeta, the major focus of this review will be on the role of activins, inhibins, BMPs, nodal and MIS-signaling in breast cancer with emphasis on their utility as potential diagnostic, prognostic and therapeutic targets.
Resumo:
Detailed studies of larval development of Octolasmis angulata and Octolasmis cor are pivotal in understanding the larval morphological evolution as well as enhancing the functional ecology. Six planktotrophic naupliar stages and one non-feeding cyprid stage are documented in details for the first time for the two species of Octolasmis. Morphologically, the larvae of O. angulata and O. cor are similar in body size, setation patterns on the naupliar appendages, labrum, dorsal setae-pores, frontal horns, cyprid carapace, fronto-lateral gland pores, and lattice organs. Numbers of peculiarities were observed on the gnathobases of the antennae and mandible throughout the naupliar life-cycle. The setation pattern on the naupliar appendages are classified based on the segmentation on the naupliar appendages. The nauplius VI of both species undergoes a conspicuous change before metamorphosis into cyprid stage. The cyprid structures begin to form and modify beneath the naupliar body towards the end of stage VI. This study emphasises the importance of the pedunculate barnacle larval developmental studies not only to comprehend the larval morphological evolution but also to fill in the gaps in understanding the modification of the naupliar structures to adapt into the cyprid life-style.
Resumo:
Caballeria liewi Lim, 1995, uses adhesive secretions from the head organs and posterior secretory systems to assist in locomotion and attachment. Ultrastructural investigations show that the head organs of C. liewi consist of three pairs of antero-lateral pit-like openings bearing microvilli and ducts leading from two types of uninucleated gland cells (located lateral to the pharynx), one type producing rod-like (S1) bodies with an electron-dense matrix containing less electron-dense vesicles and the second type producing oval (S2) bodies with a homogeneous electron-dense matrix. Interlinking band-like structures are observed between S1 bodies and between S2 bodies. S1 body is synthesised in the granular endoplasmic reticulum, transported to a Golgi complex to be packaged into vesicles and routed into ducts for exudation. The synthesis of the S2 body is unresolved. Haptoral secretions manifested externally as net-like structures are derived from dual electron-dense (DED) secretory body produced in the peduncular gland cells. The DED body consists of a less electron-dense oval core in a homogeneous electron-dense matrix. On exocytosis into the pyriform haptoral reservoir, DED bodies are transformed into a secretion with two types of inclusions (less electron-dense oval and electron-dense spherical inclusions) in an electron-dense matrix. The secretions are further transformed (as small, oval, electron-dense bodies) when transported to the superficial anchor grooves, and on exudation into the gill tissues, the secretions become an electron-dense matrix. Secretory bodies associated with uniciliated structures, anchor sleeves and marginal hooks are also observed.
Resumo:
Metabolic changes are a well-described hallmark of cancer and are responses to changes in the activity of diverse oncogenes and tumour suppressors. For example, steroid hormone biosynthesis is intimately associated with changes in lipid metabolism and represents a therapeutic intervention point in the treatment of prostate cancer (PCa). Both prostate gland development and tumorigenesis rely on the activity of a steroid hormone receptor family member, the androgen receptor (AR). Recent studies have sought to define the biological effect of the AR on PCa by defining the whole-genome binding sites and gene networks that are regulated by the AR. These studies have provided the first systematic evidence that the AR influences metabolism and biosynthesis at key regulatory steps within pathways that have also been defined as points of influence for other oncogenes, including c-Myc, p53 and hypoxia-inducible factor 1α, in other cancers. The success of interfering with these pathways in a therapeutic setting will, however, hinge on our ability to manage the concomitant stress and survival responses induced by such treatments and to define appropriate therapeutic windows.
Resumo:
Alterations in transcriptional programs are fundamental to the development of cancers. The androgen receptor is central to the normal development of the prostate gland and to the development of prostate cancer. To a large extent this is believed to be due to the control of gene expression through the interaction of the androgen receptor with chromatin and subsequently with coregulators and the transcriptional machinery. Unbiased genome-wide studies have recently uncovered the recruitment sites that are gene-distal and intragenic rather than associated with proximal promoter regions. Whilst expression profiles from AR-positive primary prostate tumours and cell lines can directly relate to the AR cistrome in prostate cancer cells, this distribution raises significant challenges in making direct mechanistic connections. Furthermore, extrapolating from datasets assembled in one model to other model systems or clinical samples poses challenges if we are to use the AR-directed transcriptome to guide the development of novel biomarkers or treatment decisions. This review will provide an overview of the androgen receptor before addressing the challenges and opportunities created by whole-genome studies of the interplay between the androgen receptor and chromatin.
Resumo:
Evidence that persistent environmental pollutants may target the male reproductive system is increasing. The male reproductive system is regulated by secretion of testosterone by testicular Leydig cells, and perturbation of Leydig cell function may have ultimate consequences. 3-Methylsulfonyl-DDE (3-MeSO2-DDE) is a potent adrenal toxicants formed from the persistent insecticide DDT. Although studies have revealed the endocrine disruptive effect of 3-MeSO2-DDE, the underlying mechanisms at cellular level in steroidogenic Leydig cells remains to be established. The current study addresses the effect of 3-MeSO2-DDE on viability, hormone production and proteome response of primary neonatal porcine Leydig cells. The AlamarBlue™ assay was used to evaluate cell viability. Solid phase radioimmunoassay was used to measure concentration of hormones produced by both unstimulated and Luteinizing hormone (LH)-stimulated Leydig cells following 48h exposure. Protein samples from Leydig cells exposed to a non-cytotoxic concentration of 3-MeSO2-DDE (10μM) were subjected to nano-LC-MS/MS and analyzed on a Q Exactive mass spectrometer and quantified using label-free quantitative algorithm. Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA) were carried out for functional annotation and identification of protein interaction networks. 3-MeSO2-DDE regulated Leydig cell steroidogenesis differentially depending on cell culture condition. Whereas its effect on testosterone secretion at basal condition was stimulatory, the effect on LH-stimulated cells was inhibitory. From triplicate experiments, a total of 6804 proteins were identified in which the abundance of 86 proteins in unstimulated Leydig cells and 145 proteins in LH-stimulated Leydig cells was found to be significantly regulated in response to 3-MeSO2-DDE exposure. These proteins not only are the first reported in relation to 3-MeSO2-DDE exposure, but also display small number of proteins shared between culture conditions, suggesting the action of 3-MeSO2-DDE on several targeted pathways, including mitochondrial dysfunction, oxidative phosphorylation, EIF2-signaling, and glutathione-mediated detoxification. Further identification and characterization of these proteins and pathways may build our understanding to the molecular basis of 3-MeSO2-DDE induced endocrine disruption in Leydig cells.
Resumo:
Development of cribriform morphology (CM) heralds malignant change in human colon but lack of mechanistic understanding hampers preventive therapy. This study investigated CM pathobiology in three-dimensional (3D) Caco-2 culture models of colorectal glandular architecture, assessed translational relevance and tested effects of 1,25(OH)2D3, the active form of vitamin D. CM evolution was driven by oncogenic perturbation of the apical polarity (AP) complex comprising PTEN, CDC42 and PRKCZ (phosphatase and tensin homolog, cell division cycle 42 and protein kinase C zeta). Suppression of AP genes initiated a spatiotemporal cascade of mitotic spindle misorientation, apical membrane misalignment and aberrant epithelial configuration. Collectively, these events promoted “Swiss cheese-like” cribriform morphology (CM) comprising multiple abnormal “back to back” lumens surrounded by atypical stratified epithelium, in 3D colorectal gland models. Intestinal cancer driven purely by PTEN-deficiency in transgenic mice developed CM and in human CRC, CM associated with PTEN and PRKCZ readouts. Treatment of PTEN-deficient 3D cultures with 1,25(OH)2D3 upregulated PTEN, rapidly activated CDC42 and PRKCZ, corrected mitotic spindle alignment and suppressed CM development. Conversely, mutationally-activated KRAS blocked 1,25(OH)2D3 rescue of glandular architecture. We conclude that 1,25(OH)2D3 upregulates AP signalling to reverse CM in a KRAS wild type (wt), clinically predictive CRC model system. Vitamin D could be developed as therapy to suppress inception or progression of a subset of colorectal tumors.