231 resultados para Yahoo! Group
Resumo:
Proton pumping respiratory complex I (NADH: ubiquinone oxidoreductase) is a major component of the oxidative phosphorylation system in mitochondria and many bacteria. In mammalian cells it provides 40% of the proton motive force needed to make ATP. Defects in this giant and most complicated membrane-bound enzyme cause numerous human disorders. Yet the mechanism of complex I is still elusive. A group exhibiting redox-linked protonation that is associated with iron-sulfur cluster N2 of complex I has been proposed to act as a central component of the proton pumping machinery. Here we show that a histidine in the 49-kDa subunit that resides near iron-sulfur cluster N2 confers this redox-Bohr effect. Mutating this residue to methionine in complex I from Yarrowia lipolytica resulted in a marked shift of the redox midpoint potential of iron-sulfur cluster N2 to the negative and abolished the redox-Bohr effect. However, the mutation did not significantly affect the catalytic activity of complex I and protons were pumped with an unchanged stoichiometry of 4 H+/2e(-). This finding has significant implications on the discussion about possible proton pumping mechanism for complex I.
Resumo:
This experiment investigated the effects of providing access to grass silage on the welfare of sows introduced to a large dynamic group. Two treatments were applied: (1) access to racks containing grass silage (offering an average of 1.9 kg silage/sow/day), and (2) control treatment with no grass silage racks. Treatments 1 and 2 were applied to two separate dynamic groups, each containing 37 (2) sows. Approximately 9 sows were replaced in both groups at 3-week intervals, and each of these replacements constituted a replicate of the study. The study was replicated six times using a total of 108 sows. In a time-based cross-over design, treatments were swapped between the two dynamic groups after three replicates. Highest levels of rack usage were shown between 08:00 and 14:00 h. During peak periods, 9.8% of sows were observed at the racks at a given time. On average, 78.5% of sows observed at the racks were newly-introduced animals. Overall levels of aggression to which newly-introduced sows were exposed on the day of introduction to the group were low, and did not differ significantly between treatments (P > 0.05). In addition, injury levels measured 1-week post-introduction to the group did not differ significantly between treatments (P > 0.05). Sham chewing behaviour was more prevalent in the post-rather than the pre-feeding yard (P
Resumo:
The aim of this study was to assess the effect of group size during the post-weaning period on the performance and behaviour of pigs. A total of 1280 pigs were allocated to one of five group sizes from weaning at 4 weeks of age until 10 weeks of age. The group sizes consisted of 10, 20, 30, 40 or 60 pigs, and groups were balanced for gender and weight. All pigs were housed at a constant space allowance and one 4-space dry feeder and drinker was provided per 10 animals. Group size did not significantly affect growth rate; however, the coefficient of variation for growth was greater in groups of 10 than in larger groups, and this reached significance (P
Resumo:
This experiment investigated the effects of replacing 10, 20, 30 or 40% of a dynamic group of forty sows on the welfare of newly-introduced animals. The experiment was replicated five times, using a total of 200 multiparous sows. Replacements took place at 3 week intervals, and 3 days prior to sows being added to the group the same number of animals were removed from the group. Sows were added to the dynamic group as pre-formed groups of four animals which had resided together for a period of 5 weeks beginning directly after their piglets were weaned. Replacement rate did not appear to influence overall levels of aggression to which newly-introduced animals were exposed on the day of mixing, however aggression among newly-introduced animals increased significantly as replacement rate increased between 20 and 40% (P
Resumo:
A rapid analytical optical biosensor-based immunoassay was developed and validated for the detection of okadaic acid (OA) and its structurally related toxins from shellfish matrix. The assay utilizes a monoclonal antibody which binds to the OA group of toxins in order of their toxicities, resulting in a pseudofunctional assay. Single-laboratory validation of the assay for quantitative detection of OA determined that it has an action limit of 120 mu g/kg, a limit of detection of 31 mu g/kg, and a working range of 31-174 mu g/kg. The midpoint on the standard matrix calibration curve is 80 mu g/kg, half the current regulatory limit. Inter- and intra-assay studies of negative mussel samples spiked with various OA concentrations produced average coefficient of variation (CV) and standard deviation (SD) values of 7.9 and 10.1, respectively. The assay was also validated to confirm the ability to accurately codetect and quantify dinophysistoxin-1 (DTX-1), DTX-2, and DTX-3 from shellfish matrix. Alkaline hydrolysis was not required for the detection of DTX-3 from matrix. Excellent correlations with the data generated by the biosensor method and liquid chromatography/tandem mass spectrometry (LC/MS/MS) were obtained using a certified reference material (R-2 = 0.99), laboratory reference material, and naturally contaminated mussel samples (R-2 = 0.97). This new procedure could be used as a rapid screening procedure replacing animal-based tests for DSP toxins.
Resumo:
. Crombie, Leslie; Jones, Raymond C. F.; Haigh, David. Dep. Chem., Univ. Nottingham, Nottingham, UK. Tetrahedron Letters (1986), 27(42), 5147-50. CODEN: TELEAY ISSN: 0040-4039. Journal written in English. CAN 107:96956 AN 1987:496956 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract Spermine alkaloids homaline (I), hopromalinol, hopromine, and hoprominol are prpared by sequential coupling of 4-substituted 5-methyl-1,5-diazacyclooctan-2-ones, available by transamidation from 4-substituted azetidin-2-ones, to 1,4-dichlorobut-2-ene.
Resumo:
http://www.jidc.org/index.php/journal/article/view/20818098/422 Background: Extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae have been reported previously from Pakistan but the genotypic characteristics of these enzymes is not known. Hence the aim of the study was first to characterise the genotypic content of these beta-lactamases and secondly to assess the clonal relationship of these isolates. Methodology: We analysed 65 non-duplicate ESBL positive, K. pneumoniae isolates prospectively collected based on phenotype as detected using the two-disc method. Isolates were collected from different sources: blood cultures (46.15%; n = 30); tracheal aspirates (24.6%; n = 16); urine (10.7%; n = 7); wound swabs, pus and tissue (18.4%; n = 12). ESBL production was confirmed by the ESBL E-test method and the presence of the blaCTX-M encoding genes was confirmed by polymerase chain reaction. The clonal relationship of clinical isolates was studied by Pulsed Field Gel Electrophoresis. Results: The results showed that 93.84% (n = 61) isolates of K. pneumoniae were positive for the blaCTX-M-1 group. One isolate showed PCR signals for blaCTX-M-25 group. None of our isolates were positive for CTX-M groups 2, 8 and 9. The majority of blaCTX-M positive isolates were genetically unrelated and no epidemic clones were identified. Conclusion: This study reports the emergence of CTX-M groups 1 and 25 producing isolates of K. pneumoniae with genetic diversity in Karachi, Pakistan.