64 resultados para Woolen and worsted manufacture
Resumo:
Engineered cocrystals offer an alternative solid drug form with tailored physicochemical properties. Interestingly, although cocrystals provide many new possibilities, they also present new challenges, particularly in regard to their design and large-scale manufacture. Current literature has primarily focused on the preparation and characterization of novel cocrystals typically containing only the drug and coformer, leaving the subsequent formulation less explored. In this paper we propose, for the first time, the use of hot melt extrusion for the mechanochemical synthesis of pharmaceutical cocrystals in the presence of a meltable binder. In this approach, we examine excipients that are amenable to hot melt extrusion, forming a suspension of cocrystal particulates embedded in a pharmaceutical matrix. Using ibuprofen and isonicotinamide as a model cocrystal reagent pair, formulations extruded with a small molecular matrix carrier (xylitol) were examined to be intimate mixtures wherein the newly formed cocrystal particulates were physically suspended in a matrix. With respect to formulations extruded using polymeric carriers (Soluplus and Eudragit EPO, respectively), however, there was no evidence within PXRD patterns of either crystalline ibuprofen or the cocrystal. Importantly, it was established in this study that an appropriate carrier for a cocrystal reagent pair during HME processing should satisfy certain criteria including limited interaction with parent reagents and cocrystal product, processing temperature sufficiently lower than the onset of cocrystal Tm, low melt viscosity, and rapid solidification upon cooling.
Resumo:
Radiocarbon dating and Bayesian chronological modelling, undertaken as part of the investigation by the Times of Their Lives project into the development of Late Neolithic settlement and pottery in Orkney, has provided precise new dating for the Grooved Ware settlement of Barnhouse, excavated in 1985–91. Previous understandings of the site and its pottery are presented. A Bayesian model based on 70 measurements on 62 samples (of which 50 samples are thought to date accurately the deposits from which they were recovered) suggests that the settlement probably began in the later 32nd century cal bc (with Houses 2, 9, 3 and perhaps 5a), possibly as a planned foundation. Structure 8 – a large, monumental structure that differs in character from the houses – was probably built just after the turn of the millennium. Varied house durations and replacements are estimated. House 2 went out of use before the end of the settlement, and Structure 8 was probably the last element to be abandoned, probably during the earlier 29th century cal bc. The Grooved Ware pottery from the site is characterised by small, medium-sized, and large vessels with incised and impressed decoration, including a distinctive, false-relief, wavy-line cordon motif. A considerable degree of consistency is apparent in many aspects of ceramic design and manufacture over the use-life of the settlement, the principal change being the appearance, from c. 3025–2975 cal bc, of large coarse ware vessels with uneven surfaces and thick applied cordons, and of the use of applied dimpled circular pellets. The circumstances of new foundation of settlement in the western part of Mainland are discussed, as well as the maintenance and character of the site. The pottery from the site is among the earliest Grooved Ware so far dated. Its wider connections are noted, as well as the significant implications for our understanding of the timing and circumstances of the emergence of Grooved Ware, and the role of material culture in social strategies.
Resumo:
One of the important factors in the use of portland cement concrete is its durability, and most of the situations where durability is lacking have been identifi ed and strategies to manage durability have been implemented. Geopolymer concrete, made from an alkali-activated natural pozzolan (AANP), provides an important opportunity for the reduction of carbon dioxide (CO2) emissions associated with the manufacture of concrete but has a limited history of durability studies. Until its different properties are well understood there is no desire to adopt this new technology of unknown provenance by the concrete industry. This paper presents an experimental study of oxygen and chloride permeability of AANP concrete prepared by activating Taftan andesite and Shahindej dacite (Iranian natural pozzolans), with and without calcining, and the correlations between these properties and compressive strength. The results show that compared to ordinary portland cement (OPC) concrete, AANP concrete has lower oxygen permeability at later ages; but it shows moderate to high chloride ion penetrability.
Resumo:
The Neem tree, the oil of which has a long history of pesticide, fertilizer and medicinal use in India, has been studied extensively for its organic compounds. Here we present a physical, mineralogical and geochemical database resulting from the analyses of two Neem soil profiles (epipedons) in India. Neem tree derivatives are used in the manufacture of a variety of products, from anti-bacterial drugs and insecticides to fertilizers and animal feeds. A preliminary geochemical and mineralogical analysis of Neem soils is made to explore the potential for chemical links between Neem tree derivatives and soils. Physical soil characteristics, including colour, texture and clay mineralogy, suggest the two pedons formed under different hydrological regimes, and hence, are products of different leaching environments, one well-drained site, the other poorly drained. Geochemically, the two Neem soils exhibit similarities, with elevated concentrations of Th and rare earth elements. These elements are of interest because of their association with phosphates, especially monazite and apatite, and the potential link to fertilizer derivatives. Higher concentrations of trace elements in the soils may be linked to nutritional derivatives and to cell growth in the Neem tree.