66 resultados para Two-Fluid Model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Artemisinin and related compounds are potent and widely used antimalarial drugs but their biochemical mode of action is not clear. There is strong evidence that ATP-dependent calcium transporters are a key target in the malarial parasite. However, work using Saccharomyces cerevisiae suggests that disruption of mitochondrial function is critical in the cell killing activity of these compounds. Here it is shown that, in the absence of reducing agents, artemisinin and artesunate targeted the S. cerevisiae calcium channels Pmr1p and Pmc1p. Both compounds affected the growth of yeast on fermentable and nonfermentable media. This growth inhibition was not seen in a yeast strain in which the genes encoding both calcium channels were deleted. In the presence of reducing agents, which break the endoperoxide bridge in the drugs, growth inhibition was only observed in nonfermentable media. This inhibition could be partially relieved by the addition of a free radical scavenger. These results suggest that the drugs have two biochemical modes of action - one acting by specific binding to calcium channels and one involving free radical production in the mitochondria.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The two-phase flow of a hydrophobic ionic liquid and water was studied in capillaries made of three different materials (two types of Teflon, FEP and Tefzel, and glass) with sizes between 200µm and 270µm. The ionic liquid was 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide, with density and viscosity of 1420kgm and 0.041kgms, respectively. Flow patterns and pressure drop were measured for two inlet configurations (T- and Y-junction), for total flow rates of 0.065-214.9cmh and ionic liquid volume fractions from 0.05 to 0.8. The continuous phase in the glass capillary depended on the fluid that initially filled the channel. When water was introduced first, it became the continuous phase with the ionic liquid forming plugs or a mixture of plugs and drops within it. In the Teflon microchannels, the order that fluids were introduced did not affect the results and the ionic liquid was always the continuous phase. The main patterns observed were annular, plug, and drop flow. Pressure drop in the Teflon microchannels at a constant ionic liquid flow rate, was found to increase as the ionic liquid volume fraction decreased, and was always higher than the single phase ionic liquid value at the same flow rate as in the two-phase mixture. However, in the glass microchannel during plug flow with water as the continuous phase, pressure drop for a constant ionic liquid flow rate was always lower than the single phase ionic liquid value. A modified plug flow pressure drop model using a correlation for film thickness derived for the current fluids pair showed very good agreement with the experimental data. © 2013 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many of the physiological functions of von Willebrand Factor (VWF), including its binding interaction with blood platelets, are regulated by the magnitude of applied fluid/hydrodynamic stress. We applied two complementary strategies to study the effect of fluid forces on the solution structure of VWF. First, small-angle neutron scattering was used to measure protein conformation changes in response to laminar shear rates (G) up to 3000/s. Here, purified VWF was sheared in a quartz Couette cell and protein conformation was measured in real time over length scales from 2-140 nm. Second, changes in VWF structure up to 9600/s were quantified by measuring the binding of a fluorescent probe 1,1'-bis(anilino)-4-,4'-bis(naphtalene)-8,8'-disulfonate (bis-ANS) to hydrophobic pockets exposed in the sheared protein. Small angle neutron scattering studies, coupled with quantitative modeling, showed that VWF undergoes structural changes at G < 3000/s. These changes were most prominent at length scales <10 nm (scattering vector (q) range >0.6/nm). A mathematical model attributes these changes to the rearrangement of domain level features within the globular section of the protein. Studies with bis-ANS demonstrated marked increase in bis-ANS binding at G > 2300/s. Together, the data suggest that local rearrangements at the domain level may precede changes at larger-length scales that accompany exposure of protein hydrophobic pockets. Changes in VWF conformation reported here likely regulate protein function in response to fluid shear.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates the construction of linear-in-the-parameters (LITP) models for multi-output regression problems. Most existing stepwise forward algorithms choose the regressor terms one by one, each time maximizing the model error reduction ratio. The drawback is that such procedures cannot guarantee a sparse model, especially under highly noisy learning conditions. The main objective of this paper is to improve the sparsity and generalization capability of a model for multi-output regression problems, while reducing the computational complexity. This is achieved by proposing a novel multi-output two-stage locally regularized model construction (MTLRMC) method using the extreme learning machine (ELM). In this new algorithm, the nonlinear parameters in each term, such as the width of the Gaussian function and the power of a polynomial term, are firstly determined by the ELM. An initial multi-output LITP model is then generated according to the termination criteria in the first stage. The significance of each selected regressor is checked and the insignificant ones are replaced at the second stage. The proposed method can produce an optimized compact model by using the regularized parameters. Further, to reduce the computational complexity, a proper regression context is used to allow fast implementation of the proposed method. Simulation results confirm the effectiveness of the proposed technique. © 2013 Elsevier B.V.