91 resultados para Turning traffic.
Resumo:
This paper reports laboratory experiments designed to study the impact of public information about past departure rates on congestion levels and travel costs. Our design is based on a discrete version of Arnott et al.'s (1990) bottleneck model. In all treatments, congestion occurs and the observed travel costs are quite similar to the predicted ones. Subjects' capacity to coordinate is not affected by the availability of public information on past departure rates, by the number of drivers or by the relative cost of delay. This seemingly absence of treatment effects is confirmed by our finding that a parameter-free reinforcement learning model best characterises individual behaviour.
Turning the tide: A critique of Natural Semantic Metalanguage from a translation studies perspective
Resumo:
Starting from the premise that human communication is predicated on translational phenomena, this paper applies theoretical insights and practical findings from Translation Studies to a critique of Natural Semantic Metalanguage (NSM), a theory of semantic analysis developed by Anna Wierzbicka. Key tenets of NSM, i.e. (1) culture-specificity of complex concepts; (2) the existence of a small set of universal semantic primes; and (3) definition by reductive paraphrase, are discussed critically with reference to the notions of untranslatability, equivalence, and intra-lingual translation, respectively. It is argued that a broad spectrum of research and theoretical reflection in Translation Studies may successfully feed into the study of cognition, meaning, language, and communication. The interdisciplinary exchange between Translation Studies and linguistics may be properly balanced, with the former not only being informed by but also informing and interrogating the latter.
Resumo:
'Not belonging' is becoming a prevalent theme within accounts of the first-year student experience at university. In this study the notion of not belonging is extended by assuming a more active role for the idea of liminality in a student's transition into the university environments of academic and student life. In doing so, the article suggests that the transition between one place (home) and another (university) can result in an 'in-between-ness' - a betwixt space. Through an interpretative methodology, the study explores how students begin to move from this betwixt space into feeling like fully-fledged members of university life. It is concluded that there is a wide range of turning points associated with the students' betwixt transition, which shapes, alters or indeed accentuates the ways in which they make meaningful connections with university life. Moreover, transitional turning point experiences reveal a cast of characters and symbolic objects; capture contrasting motivations and evolving relationships; display multiple trajectories of interpersonal tensions and conflicts; highlight discontinuities as well as continuities; and together, simultaneously liberate and constrain the students' transition into university life.
Resumo:
Silicon carbide (SiC) is a material of great technological interest for engineering applications concerning hostile environments where silicon-based components cannot work (beyond 623 K). Single point diamond turning (SPDT) has remained a superior and viable method to harness process efficiency and freeform shapes on this harder material. However, it is extremely difficult to machine this ceramic consistently in the ductile regime due to sudden and rapid tool wear. It thus becomes non trivial to develop an accurate understanding of tool wear mechanism during SPDT of SiC in order to identify measures to suppress wear to minimize operational cost.
In this paper, molecular dynamics (MD) simulation has been deployed with a realistic analytical bond order potential (ABOP) formalism based potential energy function to understand tool wear mechanism during single point diamond turning of SiC. The most significant result was obtained using the radial distribution function which suggests graphitization of diamond tool during the machining process. This phenomenon occurs due to the abrasive processes between these two ultra hard materials. The abrasive action results in locally high temperature which compounds with the massive cutting forces leading to sp3–sp2 order–disorder transition of diamond tool. This represents the root cause of tool wear during SPDT operation of cubic SiC. Further testing led to the development of a novel method for quantitative assessment of the progression of diamond tool wear from MD simulations.
Resumo:
In this experimental study, diamond turning of single crystal 6H-SiC was performed at a cutting speed of 1 m/s on an ultra-precision diamond turning machine (Moore Nanotech 350 UPL) to elucidate the microscopic origin of ductile-regime machining. Distilled water (pH value 7) was used as a preferred coolant during the course of machining in order to improve the tribological performance. A high magnification scanning electron microscope (SEM FIB- FEI Quanta 3D FEG) was used to examine the cutting tool before and after the machining. A surface finish of Ra=9.2 nm, better than any previously reported value on SiC was obtained. Also, tremendously high cutting resistance was offered by SiC resulting in the observation of significant wear marks on the cutting tool just after 1 km of cutting length. It was found out through a DXR Raman microscope that similar to other classical brittle materials (silicon, germanium, etc.) an occurrence of brittle-ductile transition is responsible for the ductile-regime machining of 6H-SiC. It has also been demonstrated that the structural phase transformations associated with the diamond turning of brittle materials which are normally considered as a prerequisite to ductile-regime machining, may not be observed during ductile-regime machining of polycrystalline materials.
Resumo:
Hard turning (HT) is a material removal process employing a combination of a single point cutting tool and high speeds to machine hard ferrous alloys which exhibit hardness values over 45 HRC. In this paper, a surface defect machining (SDM) method for HT is proposed which harnesses the combined advantages of porosity machining and pulsed laser pre-treatment processing. From previous experimental work, this was shown to provide better controllability of the process and improved quality of the machined surface. While the experiments showed promising results, a comprehensive understanding of this new technique could only be achieved through a rigorous, in depth theoretical analysis. Therefore, an assessment of the SDM technique was carried out using both finite element method (FEM) and molecular dynamics (MD) simulations.
FEM modelling was used to compare the conventional HT of AISI 4340 steel (52 HRC) using an Al2O3 insert with the proposed SDM method. The simulations showed very good agreement with the previously published experimental results. Compared to conventional HT, SDM provided favourable machining outcomes, such as reduced shear plane angle, reduced average cutting forces, improved surface roughness, lower residual stresses on the machined surface, reduced tool–chip interface contact length and increased chip flow velocity. Furthermore, a scientific explanation of the improved surface finish was revealed using a state-of-the-art MD simulation model which suggested that during SDM, a combination of both the cutting action and rough polishing action help improve the machined surface finish.
Resumo:
The requirement to provide multimedia services with QoS support in mobile networks has led to standardization and deployment of high speed data access technologies such as the High Speed Downlink Packet Access (HSDPA) system. HSDPA improves downlink packet data and multimedia services support in WCDMA-based cellular networks. As is the trend in emerging wireless access technologies, HSDPA supports end-user multi-class sessions comprising parallel flows with diverse Quality of Service (QoS) requirements, such as real-time (RT) voice or video streaming concurrent with non real-time (NRT) data service being transmitted to the same user, with differentiated queuing at the radio link interface. Hence, in this paper we present and evaluate novel radio link buffer management schemes for QoS control of multimedia traffic comprising concurrent RT and NRT flows in the same HSDPA end-user session. The new buffer management schemes—Enhanced Time Space Priority (E-TSP) and Dynamic Time Space Priority (D-TSP)—are designed to improve radio link and network resource utilization as well as optimize end-to-end QoS performance of both RT and NRT flows in the end-user session. Both schemes are based on a Time-Space Priority (TSP) queuing system, which provides joint delay and loss differentiation between the flows by queuing (partially) loss tolerant RT flow packets for higher transmission priority but with restricted access to the buffer space, whilst allowing unlimited access to the buffer space for delay-tolerant NRT flow but with queuing for lower transmission priority. Experiments by means of extensive system-level HSDPA simulations demonstrates that with the proposed TSP-based radio link buffer management schemes, significant end-to-end QoS performance gains accrue to end-user traffic with simultaneous RT and NRT flows, in addition to improved resource utilization in the radio access network.
Resumo:
High speed downlink packet access (HSDPA) was introduced to UMTS radio access segment to provide higher capacity for new packet switched services. As a result, packet switched sessions with multiple diverse traffic flows such as concurrent voice and data, or video and data being transmitted to the same user are a likely commonplace cellular packet data scenario. In HSDPA, radio access network (RAN) buffer management schemes are essential to support the end-to-end QoS of such sessions. Hence in this paper we present the end-to-end performance study of a proposed RAN buffer management scheme for multi-flow sessions via dynamic system-level HSDPA simulations. The scheme is an enhancement of a time-space priority (TSP) queuing strategy applied to the node B MAC-hs buffer allocated to an end user with concurrent real-time (RT) and non-real-time (NRT) flows during a multi-flow session. The experimental multi- flow scenario is a packet voice call with concurrent TCP-based file download to the same user. Results show that with the proposed enhancements to the TSP-based RAN buffer management, end-to-end QoS performance gains accrue to the NRT flow without compromising RT flow QoS of the same end user session