92 resultados para Traffic laws
Resumo:
In this paper, we introduce a macroscopic model for road traffic accidents along highway sections. We discuss the motivation and the derivation of such a model, and we present its mathematical properties. The results are presented by means of examples where a section of a crowded one-way highway contains in the middle a cluster of drivers whose dynamics are prone to road traffic accidents. We discuss the coupling conditions and present some existence results of weak solutions to the associated Riemann Problems. Furthermore, we illustrate some features of the proposed model through some numerical simulations. © The authors 2012.
Resumo:
This paper reports laboratory experiments designed to study the impact of public information about past departure rates on congestion levels and travel costs. Our design is based on a discrete version of Arnott et al.'s (1990) bottleneck model. In all treatments, congestion occurs and the observed travel costs are quite similar to the predicted ones. Subjects' capacity to coordinate is not affected by the availability of public information on past departure rates, by the number of drivers or by the relative cost of delay. This seemingly absence of treatment effects is confirmed by our finding that a parameter-free reinforcement learning model best characterises individual behaviour.
Resumo:
Global development has, in recent years, been shaped by the rise of transnational capital. This has implications for the quality and effectiveness of those national laws, regulations and policies in place to monitor transnational capital, ensure that multi national organisations assume responsibility and hold them accountable should they fail to do so. In balancing these objectives, contrasting issues come to the fore, such as the fear of capital flight; an issue especially profound in small open economies where the balance may tip in the favour of retaining, as opposed to regulating, foreign capital.
This paper can be considered in three parts. First, the paper addresses the shift in global leadership from national governments to multinational corporations (with particular reference to the rise of the Transnational Capitalist Class). This shift will incorporate the connotations of the Third Way. In considering this ideology, it will propose the Third Way as a transition phase to a stage when government is more the “third wheel” than an equal partner in governance structures. Second, the implications of the changing nature of governance on the capacity of nation states to develop effective laws, regulations and policies is discussed which leads on to the third aspect of the paper which identifies the challenges for governments, business and society in reimagining the governance structure pertaining to law, regulation and policy and the need to reconsider existing structures in light of global shifts in power structures.
A new leadership structure, both within the national and international governance system has far reaching implications. Boundary constraints no longer an issue, the potential for equality and global democracy is huge. Instead, a post recessionary world faces new governance challenges in the shape of; legitimacy; accountability and responsibility. Capitalism has invaded government and the primary challenge will be in avoiding the same issues that have dogged our financial markets for the last number of years. The challenge then to laws, regulations and public policy is huge, especially considering that the governments regulating are smaller than those dictating agenda on a global level
Resumo:
The study of interrelationships between soil structure and its functional properties is complicated by the fact that the quantitative description of soil structure is challenging. Soil scientists have tackled this challenge by taking advantage of approaches such as fractal geometry, which describes soil architectural complexity through a scaling exponent (D) relating mass and numbers of particles/aggregates to particle/aggregate size. Typically, soil biologists use empirical indices such as mean weight diameters (MWD) and percent of water stable aggregates (WSA), or the entire size distribution, and they have successfully related these indices to key soil features such as C and N dynamics and biological promoters of soil structure. Here, we focused on D, WSA and MWD and we tested whether: D estimated by the exponent of the power law of number-size distributions is a good and consistent correlate of MWD and WSA; D carries information that differs from MWD and WSA; the fraction of variation in D that is uncorrelated with MWD and WSA is related to soil chemical and biological properties that are thought to establish interdependence with soil structure (e.g., organic C, N, arbuscular mycorrhizal fungi). We analysed observational data from a broad scale field study and results from a greenhouse experiment where arbuscular mycorrhizal fungi (AMF) and collembola altered soil structure. We were able to develop empirical models that account for a highly significant and large portion of the correlation observed between WSA and MWD but we did not uncover the mechanisms that underlie this correlation. We conclude that most of the covariance between D and soil biotic (AMF, plant roots) and abiotic (C. N) properties can be accounted for by WSA and MWD. This result implies that the ecological effects of the fragmentation properties described by D and generally discussed under the framework of fractal models can be interpreted under the intuitive perspective of simpler indices and we suggest that the biotic components mostly impacted the largest size fractions, which dominate MWD, WSA and the scaling exponent ruling number-size distributions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A significant amount of experimental work has been devoted over the last decade to the development and optimization of proton acceleration based on the so-called Target Normal Sheath acceleration mechanism. Several studies have been dedicated to the determination of scaling laws for the maximum energy of the protons as a function of the parameters of the irradiating pulses, studies based on experimental results and on models of the acceleration process. We briefly summarize the state of the art in this area, and review some of the scaling studies presented in the literature. We also discuss some recent results, and projected scalings, related to a different acceleration mechanism for ions, based on the Radiation Pressure of an ultraintense laser pulse.
Resumo:
The requirement to provide multimedia services with QoS support in mobile networks has led to standardization and deployment of high speed data access technologies such as the High Speed Downlink Packet Access (HSDPA) system. HSDPA improves downlink packet data and multimedia services support in WCDMA-based cellular networks. As is the trend in emerging wireless access technologies, HSDPA supports end-user multi-class sessions comprising parallel flows with diverse Quality of Service (QoS) requirements, such as real-time (RT) voice or video streaming concurrent with non real-time (NRT) data service being transmitted to the same user, with differentiated queuing at the radio link interface. Hence, in this paper we present and evaluate novel radio link buffer management schemes for QoS control of multimedia traffic comprising concurrent RT and NRT flows in the same HSDPA end-user session. The new buffer management schemes—Enhanced Time Space Priority (E-TSP) and Dynamic Time Space Priority (D-TSP)—are designed to improve radio link and network resource utilization as well as optimize end-to-end QoS performance of both RT and NRT flows in the end-user session. Both schemes are based on a Time-Space Priority (TSP) queuing system, which provides joint delay and loss differentiation between the flows by queuing (partially) loss tolerant RT flow packets for higher transmission priority but with restricted access to the buffer space, whilst allowing unlimited access to the buffer space for delay-tolerant NRT flow but with queuing for lower transmission priority. Experiments by means of extensive system-level HSDPA simulations demonstrates that with the proposed TSP-based radio link buffer management schemes, significant end-to-end QoS performance gains accrue to end-user traffic with simultaneous RT and NRT flows, in addition to improved resource utilization in the radio access network.
Resumo:
High speed downlink packet access (HSDPA) was introduced to UMTS radio access segment to provide higher capacity for new packet switched services. As a result, packet switched sessions with multiple diverse traffic flows such as concurrent voice and data, or video and data being transmitted to the same user are a likely commonplace cellular packet data scenario. In HSDPA, radio access network (RAN) buffer management schemes are essential to support the end-to-end QoS of such sessions. Hence in this paper we present the end-to-end performance study of a proposed RAN buffer management scheme for multi-flow sessions via dynamic system-level HSDPA simulations. The scheme is an enhancement of a time-space priority (TSP) queuing strategy applied to the node B MAC-hs buffer allocated to an end user with concurrent real-time (RT) and non-real-time (NRT) flows during a multi-flow session. The experimental multi- flow scenario is a packet voice call with concurrent TCP-based file download to the same user. Results show that with the proposed enhancements to the TSP-based RAN buffer management, end-to-end QoS performance gains accrue to the NRT flow without compromising RT flow QoS of the same end user session