139 resultados para Tracking computacional
Resumo:
Clock-shifted homing pigeons were tracked from familiar sites 17.1km and 23.5 km from the home loft in Pisa, Italy, using an on-board route recorder. At the first release site, north of home, the majority of clock-shifted birds had relatively straight tracks comparable with those of control birds, At the second release site, south of home, the clock-shifted birds deflected in the direction predicted for the degree of clock shift, with many birds travelling some distance in the wrong direction before correcting their course. The possible role of large-scale terrain features in homing pigeon navigation is discussed.
Resumo:
Clock-shifted homing pigeons (Rock Dove Columba livia) were tracked from familiar release sites using a direction recorder. At relatively short distances from the home loft (
Resumo:
This paper presents a new method for tracking Thévenin equivalent parameters for a power system at a node using local Phasor Measurement Unit (PMU) measurements. Three consecutive phasor measurements for voltage and current, recorded at one location, are used. The phase drifts caused by the measurement slip frequency are first determined and phase angles of the measured phasors are corrected so that the corrected phasors are synchronized to the same reference. The synchronized phasors are then used to determine the equivalent Thévenin parameters of the system.
Resumo:
Colour-based particle filters have been used exhaustively in the literature given rise to multiple applications However tracking coloured objects through time has an important drawback since the way in which the camera perceives the colour of the object can change Simple updates are often used to address this problem which imply a risk of distorting the model and losing the target In this paper a joint image characteristic-space tracking is proposed which updates the model simultaneously to the object location In order to avoid the curse of dimensionality a Rao-Blackwellised particle filter has been used Using this technique the hypotheses are evaluated depending on the difference between the model and the current target appearance during the updating stage Convincing results have been obtained in sequences under both sudden and gradual illumination condition changes Crown Copyright (C) 2010 Published by Elsevier B V All rights reserved
Resumo:
We propose a complete application capable of tracking multiple objects in an environment monitored by multiple cameras. The system has been specially developed to be applied to sport games, and it has been evaluated in a real association-football stadium. Each target is tracked using a local importance-sampling particle filter in each camera, but the final estimation is made by combining information from the other cameras using a modified unscented Kalman filter algorithm. Multicamera integration enables us to compensate for bad measurements or occlusions in some cameras thanks to the other views it offers. The final algorithm results in a more accurate system with a lower failure rate. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3114605]
Resumo:
In this paper, we introduce an efficient method for particle selection in tracking objects in complex scenes. Firstly, we improve the proposal distribution function of the tracking algorithm, including current observation, reducing the cost of evaluating particles with a very low likelihood. In addition, we use a partitioned sampling approach to decompose the dynamic state in several stages. It enables to deal with high-dimensional states without an excessive computational cost. To represent the color distribution, the appearance of the tracked object is modelled by sampled pixels. Based on this representation, the probability of any observation is estimated using non-parametric techniques in color space. As a result, we obtain a Probability color Density Image (PDI) where each pixel points its membership to the target color model. In this way, the evaluation of all particles is accelerated by computing the likelihood p(z|x) using the Integral Image of the PDI.
Resumo:
In human motion analysis, the joint estimation of appearance, body pose and location parameters is not always tractable due to its huge computational cost. In this paper, we propose a Rao-Blackwellized Particle Filter for addressing the problem of human pose estimation and tracking. The advantage of the proposed approach is that Rao-Blackwellization allows the state variables to be splitted into two sets, being one of them analytically calculated from the posterior probability of the remaining ones. This procedure reduces the dimensionality of the Particle Filter, thus requiring fewer particles to achieve a similar tracking performance. In this manner, location and size over the image are obtained stochastically using colour and motion clues, whereas body pose is solved analytically applying learned human Point Distribution Models.
Resumo:
We present a Spatio-temporal 2D Models Framework (STMF) for 2D-Pose tracking. Space and time are discretized and a mixture of probabilistic "local models" is learnt associating 2D Shapes and 2D Stick Figures. Those spatio-temporal models generalize well for a particular viewpoint and state of the tracked action but some spatio-temporal discontinuities can appear along a sequence, as a direct consequence of the discretization. To overcome the problem, we propose to apply a Rao-Blackwellized Particle Filter (RBPF) in the 2D-Pose eigenspace, thus interpolating unseen data between view-based clusters. The fitness to the images of the predicted 2D-Poses is evaluated combining our STMF with spatio-temporal constraints. A robust, fast and smooth human motion tracker is obtained by tracking only the few most important dimensions of the state space and by refining deterministically with our STMF.