89 resultados para Thomas, Fletcher, 1831-1907.
Resumo:
A vibrant inner city parish needed space for meetings, language classes, children’s play and other support accommodation as well as a clearer link between the interior of the listed church and the space outside.
The project builds itself about the entrance to the church. The form is manipulated such that the intervention recedes from those entering the church, drawing them into the plan before becoming readable as an addition. The resultant poché between this entrance sequence and the fabric of the church is hollowed out to provide the required accommodation. These rooms are insulated and lined in cork to allow for their use separate to the main body of the church. With budget at a premium the construction methodology was developed from an analysis of traditional Irish boat building techniques, which allowed the use of the solid timber to act as the primary structure with no additional material support.
Constructed in solid walnut the intervention reads with the existing brick interior and yet is clearly identifiable as a contemporary addition.
Aims / Objectives Questions
1 To accommodate new space inside an existing protected structure.
2 To form a new threshold between interior and exterior.
3 To develop an affordable means of construction that would be durable and rapid to erect.
4 To make a contemporary addition in sympathy with the qualities of the existing protect structure, in line with best conservation practice and research.
5 Traditional forms of construction as a model for contemporary technologies.
Principal Investigator: Clancy Moore Architects –Colm Moore
Co-investigator(s): Andrew Clancy, Mathew O’Malley
Funding partner/ Client: Select Vestry of St George and St Thomas
Finance. €35’000
Date (start – finished) Start June 2008 – Completed December 2008
Resumo:
Additional Accommodation Church of St George and St Thomas - Critical Appraisal ‘A Damascene Conversion’ by Shane O’Toole in The Sunday Times December 2008.
Resumo:
Clear evidence exists for heritability of humanlongevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project. In the joint linkage analyses, we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD = 3.47), chromosome 17q12-q22 (LOD = 2.95), chromosome 19p13.3-p13.11 (LOD = 3.76), and chromosome 19q13.11-q13.32 (LOD = 3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1228 unrelated nonagenarian and 1907 geographically matched controls. Using a fixed-effect meta-analysis approach, rs4420638 at the TOMM40/ APOE/APOC1 gene locus showed significant association with longevity (P-value = 9.6 × 10). By combined modeling of linkage and association, we showed that association of longevity with APOEe4 and APOEe2 alleles explain the linkage at 19q13.11-q13.32 with P-value = 0.02 and P-value = 1.0 × 10, respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12-q22, and 19p13.3-p13.11. As the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity.
Resumo:
There is considerable interest in hydrogen adsorption on carbon nanotubes and porous carbons as a method of storage for transport and related energy applications. This investigation has involved a systematic investigation of the role of functional groups and porous structure characteristics in determining the hydrogen adsorption characteristics of porous carbons. Suites of carbons were prepared with a wide range of nitrogen and oxygen contents and types of functional groups to investigate their effect on hydrogen adsorption. The porous structures of the carbons were characterized by nitrogen (77 K) and carbon dioxide (273 K) adsorption methods. Hydrogen adsorption isotherms were studied at 77 K and pressure up to 100 kPa. All the isotherms were Type I in the IUPAC classification scheme. Hydrogen isobars indicated that the adsorption of hydrogen is very temperature dependent with little or no hydrogen adsorption above 195 K. The isosteric enthalpies of adsorption at zero surface coverage were obtained using a virial equation, while the values at various surface coverages were obtained from the van't Hoff isochore. The values were in the range 3.9-5.2 kJ mol(-1) for the carbons studied. The thermodynamics of the adsorption process are discussed in relation to temperature limitations for hydrogen storage applications. The maximum amounts of hydrogen adsorbed correlated with the micropore volume obtained from extrapolation of the Dubinin-Radushkevich equation for carbon dioxide adsorption. Functional groups have a small detrimental effect on hydrogen adsorption, and this is related to decreased adsorbate-adsorbent and increased adsorbate-adsorbate interactions.
Resumo:
Adsorption and desorption of hydrogen from nanoporous materials, such as activated carbon, is usually fully reversible. We have prepared nanoporous metal-organic framework materials with flexible linkers in which the pore openings, as characterized in the static structures, appear to be too small to allow H-2 to pass. We observe hysteresis in their adsorption and desorption kinetics above the supercritical temperature of H-2 that reflects the dynamical opening of the "windows" between pores. This behavior would allow H-2 to be adsorbed at high pressures but stored at lower pressures.