65 resultados para Thermocapillary instability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the hydrogeological processes which caused unexpected instability and quick conditions during the excavation of a 25m deep cutting through a drumlin in County Down, Northern Ireland. A conceptual hydrogeological model of the cutting, based on pore pressures monitored during and after the excavation demonstrates how quick conditions at the toe of the cutting caused liquefaction of the till. Stability of the cutting was re-established by draining the highly permeable, weathered Greywacke which underlies the drumlin, through the use of a deep toe drain. In spite of this drainage, the cutting was only marginally stable due to the presence of a low permeability zone in the till above the bedrock which limits the reduction of elevated pore pressures within the upper to mid-depths of the drumlin. The factor of safety has been further improved by the addition of vertical relief drains at the crest and berm of the cutting to relieve the pore-pressures within the upper till by intercepting the weathered bedrock. The paper also highlights the importance of carrying out an adequate site investigation compliant with Eurocode 7 and additional monitoring in excavations in stiff, low permeability till.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using data obtained by the high-resolution CRisp Imaging SpectroPolarimeter instrument on the Swedish 1 m Solar Telescope, we investigate the dynamics and stability of quiet-Sun chromospheric jets observed at the disk center. Small-scale features, such as rapid redshifted and blueshifted excursions, appearing as high-peed jets in the wings of the Hα line, are characterized by short lifetimes and rapid fading without any descending behavior. To study the theoretical aspects of their stability without considering their formation mechanism, we model chromospheric jets as twisted magnetic flux tubes moving along their axis, and use the ideal linear incompressible magnetohydrodynamic approximation to derive the governing dispersion equation. Analytical solutions of the dispersion equation indicate that this type of jet is unstable to Kelvin–Helmholtz instability (KHI), with a very short (few seconds) instability growth time at high upflow speeds. The generated vortices and unresolved turbulent flows associated with the KHI could be observed as a broadening of chromospheric spectral lines. Analysis of the Hα line profiles shows that the detected structures have enhanced line widths with respect to the background. We also investigate the stability of a larger-scale Hα jet that was ejected along the line of sight. Vortex-like features, rapidly developing around the jet’s boundary, are considered as evidence of the KHI. The analysis of the energy equation in the partially ionized plasma shows that ion–neutral collisions may lead to fast heating of the KH vortices over timescales comparable to the lifetime of chromospheric jets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses three questions: (1) How severe were the episodes of banking instability
experienced by the UK over the past two centuries? (2) What have been the macroeconomic
indicators of UK banking instability? and (3) What have been the consequences of UK banking
instability for the cost of credit? Using a unique dataset of bank share prices from 1830 to 2010
to assess the stability of the UK banking system, we find that banking instability has grown more
severe since the 1970s. We also find that interest rates, inflation, lending growth, and equity
prices are consistent macroeconomic indicators of UK banking instability over the long run.
Furthermore, utilising a unique dataset of corporate-bond yields for the period 1860 to 2010, we
find that there is a significant long-run relationship between banking instability and the creditrisk
premium faced by businesses.