84 resultados para Tecnologia da Infonnação (TI)
Resumo:
Thin single-crystal lamellae cut from Pb(Zr,Ti)O3–Pb(Fe,Ta)O3 ceramic samples have been integrated into simple coplanar capacitor devices. The influence of applied electric and magnetic fields on ferroelectric domain configurations has been mapped, using piezoresponse force microscopy. The extent to which magnetic fields alter the ferroelectric domains was found to be strongly history dependent: after switching had been induced by applying electric fields, the susceptibility of the domains to change under a magnetic field (the effective magnetoelectric coupling parameter) was large. Such large, magnetic field-induced changes resulted in a remanent domain state very similar to the remanent state induced by an electric field. Subsequent magnetic field reversal induced more modest ferroelectric switching.
Resumo:
Recently, lead iron tantalate/lead zirconium titanate (PZTFT) was demonstrated to possess large, but unreliable, magnetoelectric coupling at room temperature. Such large coupling would be desirable for device applications but reproducibility would also be critical. To better understand the coupling, the properties of all 3 ferroic order parameters, elastic, electric, and magnetic, believed to be present in the material across a range of temperatures, are investigated. In high temperature elastic data, an anomaly is observed at the orthorhombic mm2 to tetragonal 4mm transition, Tot = 475 K, and a softening trend is observed as the temperature is increased toward 1300 K, where the material is known to become cubic. Thermal degradation makes it impos- sible to measure elastic behavior up to this temperature, however. In the low temperature region, there are elastic anomalies near ≈40 K and in the range 160–245 K. The former is interpreted as being due to a magnetic ordering transition and the latter is interpreted as a hysteretic regime of mixed rhom- bohedral and orthorhombic structures. Electrical and magnetic data collected below room temperature show anomalies at remarkably similar temperature ranges to the elastic data. These observations are used to suggest that the three order parameters in PZTFT are strongly coupled.
Resumo:
In this work we report on the evaluation of electron-impact collision strengths and Maxwellian averaged effective collision strengths for the lowly-ionized Fe-peak elements Sc II and Ti II using the parallel R-matrix package RMATRX II.
Resumo:
The plain fatigue and fretting fatigue tests of Ti-1023 titanium alloy were performed using a high-frequency push-pull fatigue testing machine. Both σmax versus number of cycles to failure curves were obtained for comparative analysis of the fretting effect on fatigue performance of the titanium alloy. Meanwhile, by analyzing the fracture of plain fatigue and fretting fatigue, the fretting scar and the fretting debris observed by scanning electron microscopy (SEM), the mechanism of fretting fatigue failure of Ti-1023 titanium alloy is discussed. The fretting fatigue strength of Ti-1023 titanium alloy is 175 MPa under 10 MPa contact pressure, which is 21% of plain fatigue strength (836 MPa). Under fretting condition, the Ti-1023 titanium alloy fatigue fracture failure occurs in a shorter fatigue life. When it comes to σmax versus number of cycles to failure curves, data points in the range of 106–107 cycles under plain fatigue condition moved to the range of 105–106 under fretting fatigue condition. The integrity of the fatigue specimen surface was seriously damaged under the effect of fretting. With the alternating stress loaded on specimen, the stress concentrated on the surface of fretting area, which brought earlier the initiation and propagation of crack.
Resumo:
A spectroscopic study of the He-alpha (1s(2) S-1(0) - 1s2p P-1(1)) line emission (4749.73 eV) from high density plasma was conducted. The plasma was produced by irradiating Ti targets with intense (I approximate to 1x10(19) W/cm(2)), 400nm wavelength high contrast, short (45fs) p-polarized laser pulses at an angle of 45 degrees. A line shift up to 3.4 +/- 1.0 eV (1.9 +/- 0.55 m angstrom) was observed in the He-alpha line. The line width of the resonance line at FWHM was measured to be 12.1 +/- 0.6 eV (6.7 +/- 0.35 m angstrom). For comparison, we looked into the emission of the same spectral line from plasma produced by irradiating the same target with laser pulses of reduced intensities (approximate to 10(17) W/cm(2)): we observed a spectral shift of only 1.8 +/- 1.0 eV (0.9 +/- 0.55m angstrom) and the line-width measures up to 5.8 +/- 0.25 eV (2.7 +/- 0.35 m angstrom). These data provide evidence of plasma polarization shift of the Ti He-alpha line.
Resumo:
The dielectric properties of BaTiO3 thin films and multilayers are different from bulk materials because of nanoscale dimensions, interfaces, and stress-strain conditions. In this study, BaTiO3/SrTiO3 multilayers deposited on SrTiO3 substrates by pulsed laser deposition have been investigated by high-energy-resolution electron energy-loss spectroscopy. The fine structures in the spectra are discussed in terms of crystal-field splitting and the internal strain. The crystal-field splitting of the BaTiO3 thin layer is found to be a little larger than that of bulk BaTiO3, which has been interpreted by the presence of the internal strain induced by the misfit at the interface. This finding is consistent with the lattice parameters of the BaTiO3 thin layer determined by the selected area diffraction pattern. The near-edge structure of the oxygen K edge in BaTiO3 thin layers and in bulk BaTiO3 are simulated by first-principle self-consistent full multiple-scattering calculations. The results of the simulations are in a good agreement with the experimental results. Moreover, the aggregation of oxygen vacancies at the rough BaTiO3/SrTiO3 interface is indicated by the increased [Ti]/[O] element ratio, which dominates the difference of dielectric properties between BaTiO3 layer and bulk materials.
Resumo:
The coupling between magnetization and polarization in a room temperature multiferroic (Pb(Zr,Ti)O3–Pb(Fe,Ta)O3) is explored by monitoring changes in capacitance that occur when a magnetic field is applied in each of three orthogonal directions. Magnetocapacitance effects, consistent with P2M2 coupling, are strongest when fields are applied in the plane of the single crystal sheet investigated.
Resumo:
We report calculations of energy levels, radiative rates, oscillator strengths and line strengths for transitions among the lowest 231 levels of Ti VII. The general-purpose relativistic atomic structure package and flexible atomic code are adopted for the calculations. Radiative rates, oscillator strengths and line strengths are provided for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions among the 231 levels, although calculations have been performed for a much larger number of levels (159 162). In addition, lifetimes for all 231 levels are listed. Comparisons are made with existing results and the accuracy of the data is assessed. In particular, the most recent calculations reported by Singh et al (2012 Can. J. Phys. 90 833) are found to be unreliable, with discrepancies for energy levels of up to 1 Ryd and for radiative rates of up to five orders of magnitude for several transitions, particularly the weaker ones. Based on several comparisons among a variety of calculations with two independent codes, as well as with the earlier results, our listed energy levels are estimated to be accurate to better than 1% (within 0.1 Ryd), whereas results for radiative rates and other related parameters should be accurate to better than 20%.
Resumo:
We report on calculations of energy levels, radiative rates, oscillator strengths and line strengths for transitions among the lowest 253 levels of the (1s22s22p6 ) 3s23p5 , 3s3p6 , 3s23p43d, 3s3p53d, 3s23p33d2 , 3s23p44s, 3s23p44p and 3s23p44d configurations of Ti VI. The general-purpose relativistic atomic structure package and flexible atomic code are adopted for the calculations. Radiative rates, oscillator strengths and line strengths are reported for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions among the 253 levels, although calculations have been performed for a much larger number of levels. Comparisons are made with existing available results and the accuracy of the data is assessed. Additionally, lifetimes for all 253 levels are listed, although comparisons with other theoretical results are limited to only 88 levels. Our energy levels are estimated to be accurate to better than 1% (within 0.03 Ryd), whereas results for other parameters are probably accurate to better than 20%. A reassessment of the energy level data on the National Institute of Standards and Technology website for Ti VI is suggested.
Resumo:
We report calculations of energy levels, radiative rates, oscillator strengths and line strengths for transitions among the lowest 345 levels of Ti X. These include 146 levels of the n 3 configurations and 86 of 3s 24ℓ, 3s25ℓ and 3s3p4ℓ, plus some of the 3s26ℓ, 3p24ℓ and 3s3p5ℓ levels. The general-purpose relativistic atomic structure package and flexible atomic code are adopted for the calculations. Radiative rates, oscillator strengths and line strengths are provided for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2) and magnetic quadrupole (M2) transitions among the 345 levels, although calculations have been performed for a much larger number of levels. Comparisons are made with existing results and the accuracy of the data is assessed. Additionally, lifetimes for all 345 levels are listed. Extensive comparisons of lifetimes are made for the lowest 40 levels, for which discrepancies with recent theoretical work are up to 30%. Discrepancies in lifetimes are even larger, up to a factor of four, for higher excited levels. Furthermore, the effect of large configuration interaction (CI) is found to be insignificant for both the energies and lifetimes for the lowest 40 levels of Ti X which belong to the 3s23p, 3s3p2, 3s23d, 3p3 and 3s3p3d configurations. However, the contribution of CI is more appreciable for the energy levels and radiative rates among higher excited levels. Our listed energy levels are estimated to be accurate to better than 1% (within 0.1 Ryd), whereas results for other parameters are probably accurate to better than 20%. © 2013 The Royal Swedish Academy of Sciences.
Resumo:
We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in Be-like Ti XIX. The general-purpose relativistic atomic structure package is adopted for calculating energy levels and radiative rates. For determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 98 levels of the n≤ 4 configurations. Additionally, theoretical lifetimes are listed for all 98 levels. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 10 7.7K. Comparisons are made with similar data obtained from the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for forbidden transitions, are also discussed.
Resumo:
We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ti XXI, V XXII, Cr XXIII and Mn XXIV. grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are listed for all the 49 levels of the above four ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 10 7.5K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, in particular for forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions.
Resumo:
With a new test facility, we have investigated fretting fatigue properties of Ti-1023 titanium alloy at different contact pressure. Both fatigue fracture and fretting scar were analyzed by scanning electron microscopy (SEM). Moreover, the depth of crack initiation area in fatigue fracture has been analyzed quantitatively, to investigate the relationship between the depth of crack initiation area and the fretting fatigue strength. The changing trends of the depth of crack initiation area and fretting fatigue strength with the increase of contact pressure show obvious opposite correlations. The depth of crack initiation area increases rapidly with the increase of contact pressure at low contact pressure (smaller than 10 MPa), and the fretting fatigue strength drops rapidly. At the contact pressure of 10–45 MPa, both the depth of crack initiation area and the fretting fatigue strength do not vary significantly. Contact pressure influences fatigue strength through influencing the initiation of fatigue crack. The main damage patterns are fatigue flake and plow.