114 resultados para TRIPLET EMISSION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold is the optimal tip metal for light emission in scanning tunnelling microscopy (LESTM) under ambient conditions. Sharp Au-tips of similar to 10nm radius were produced reliably using a safe, two-step etching method in 20% (w/w) CaCl2 solution. Previous CaCl2-based methods have tended to produce blunter tips, while other etching techniques that do produce sharp Au-tips, do so with the use of toxic or hazardous electrolytes. The tips are characterised using scanning electron microscopy and their efficacy in LESTM is evidenced by high-resolution, simultaneous topographic and photon mapping of Au(1 1 1)- and polycrystalline Au-surfaces. Spectra of the optical emission exhibit only one or two peaks with etched tips in contrast to the more complex spectra typical of cut tips; this feature, together with the highly symmetric geometry of the tips, facilitates a definitive analysis of the light emission process. (c) 2007 Elsevier B. V.. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe X are used to derive theoretical emission-line ratios involving transitions in the 174-366 angstrom wavelength range. A comparison of these with solar active region observations obtained during the 1989 and 1995 flights of the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS) reveals generally very good agreement between theory and experiment. Several Fe X emission features are detected for the first time in SERTS spectra, while the 3s(2)3p(5) P-2(3/2)-3s(2)3p(4)(S-1)3d D-2(3/2) transition at 195.32 angstrom is identified for the first time (to our knowledge) in an astronomical source. The most useful Fe X electron density (N-e) diagnostic line ratios are assessed to be 175.27/174.53 and 175.27/177.24, which both involve lines close in wavelength and free from blends, vary by factors of 13 between N-e = 10(8) and 10(11) cm(-3), and yet show little temperature sensitivity. Should these lines not be available, then the 257.25/345.74 ratio may be employed to determine N-e, although this requires an accurate evaluation of the instrument intensity calibration over a relatively large wavelength range. However, if the weak 324.73 angstrom line of Fe X is reliably detected, the use of 324.73/345.74 or 257.25/324.73 is recommended over 257.25/345.74. Electron densities deduced from 175.27/174.53 and 175.27/177.24 for the stars Procyon and alpha Cen, using observations from the Extreme-Ultraviolet Explorer (EUVE) satellite, are found to be consistent and in agreement with the values of N-e determined from other diagnostic ratios in the EUVE spectra. A comparison of several theoretical extreme-ultraviolet Fe X line ratios with experimental values for a theta-pinch, for which the plasma parameters have been independently determined, reveals reasonable agreement between theory and observation, providing some independent support for the accuracy of the adopted atomic data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inductively coupled radio-frequency plasmas can be operated in two distinct modes. At low power and comparatively low plasma densities the plasma is sustained in capacitive mode (E-mode). As the plasma density increases a transition to inductive mode (H-mode) is observed. This transition region is of particular interest and governed by non-linear dynamics, which under certain conditions results in structure formation with strong spatial gradients in light emission. These modes show pronounced differences is various measureable quantities e.g. electron densities, electron energy distribution functions, ion energy distribution functions, dynamics of optical light emission. Here the transition from E- to H- mode in an oxygen containing inductively coupled plasma (ICP) is investigated using space and phase resolved optical emission spectroscopy (PROES). The emission, measured phase resolved, allows investigation of the electron dynamics within the rf cycle, important for understanding the power coupling and ionization mechanisms in the discharge. The temporal variation of the emission reflects the dynamics of relatively high-energy electrons. It is possible to distinguish between E- and H-mode from the intensity and temporal behaviour of the emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The FLASH XUV-free electron laser has been used to irradiate solid samples at intensities of the order 10(16) W cm(-2) at a wavelength of 13.5 nm. The subsequent time integrated XUV emission was observed with a grating spectrometer. The electron temperature inferred from plasma line ratios was in the range 5-8 eV with electron density in the range 10(21)-10(22) cm(-3). These results are consistent with the saturation of absorption through bleaching of the L-edge by intense photo-absorption reported in an earlier publication. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The string mode of operation for an electron beam ion source uses axially oscillating electrons in order to reduce power consumption, also simplifying the construction by omitting the collector with cooling requirements and has been called electron string ion source (ESIS). We have started a project (supported by INTAS and GSI) to use Schottky field emitting cathode tips for generating the electron string. The emission from these specially conditioned tips is higher by orders of magnitude than the focused Brillouin current density at magnetic fields of some Tesla and electron energies of some keV. This may avoid the observed instabilities in the transition from axially oscillating electrons to the string state of the electron plasma, opening a much wider field of possible operating parameters for an ESIS. Besides the presentation of the basic features, we emphasize in this paper a method to avoid damaging of the field, emission tip by backstreaming ions. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly luminescent anionic samarium(III) beta-diketonate and dipicolinate complexes were dissolved in the imidazolium ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(6)mim][Tf2N]. The solubility of the complexes in the ionic liquid was ensured by a careful choice of the countercation of the samarium(III) complex. The samarium(III) complexes that were considered are [C(6)mim][SM(tta)(4)], where tta is 2-thenoyltrifluoroacetonate; [C(6)mim][Sm(nta)(4)], where nta is 2-naphthoyltrifluoroacetonate; [C(6)mim][Sm(hfa)(4)], where hfa is hexafluoroacetylacetonate; and [choline](3)-[Sm(dpa)(3)], where dpa is pyridine-2,6-dicarboxylate (dipicolinate) and [choline](+) is (2-hydroxyethyl)trimethyl ammonium. The crystal structures of the tetrakis samarium(III) P-diketonate complexes revealed a distorted square antiprismatic coordination for the samarium(III) ion in all three cases. Luminescence spectra were recorded for the samarium(III) complexes dissolved in the imidazolium ionic liquid as well as in a conventional solvent, that is, acetonitrile or water for the beta-diketonate and dipicolinate complexes, respectively. These experiments demonstrate that [C(6)mim][Tf2N] is a suitable spectroscopic solvent for studying samarium(III) luminescence. High-luminescence quantum yields were observed for the samarium(III) beta-diketonate complexes in solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present comprehensive photometric and spectroscopic observations of the faint transient SN 2008S discovered in the nearby galaxy NGC 6946. SN 2008S exhibited slow photometric evolution and almost no spectral variability during the first nine months, implying a long photon diffusion time and a high-density circumstellar medium. Its bolometric luminosity (similar or equal to 10(41) erg s(-1) at peak) is low with respect to most core-collapse supernovae but is comparable to the faintest Type II-P events. Our quasi-bolometric light curve extends to 300 d and shows a tail phase decay rate consistent with that of Co-56. We propose that this is evidence for an explosion and formation of Ni-56 (0.0014 +/- 0.0003 M-circle dot). Spectra of SN 2008S show intense emission lines of H alpha, [Ca II] doublet and Ca II near-infrared (NIR) triplet, all without obvious P-Cygni absorption troughs. The large mid-infrared (MIR) flux detected shortly after explosion can be explained by a light echo from pre-existing dust. The late NIR flux excess is plausibly due to a combination of warm newly formed ejecta dust together with shock-heated dust in the circumstellar environment. We reassess the progenitor object detected previously in Spitzer archive images, supplementing this discussion with a model of the MIR spectral energy distribution. This supports the idea of a dusty, optically thick shell around SN 2008S with an inner radius of nearly 90 AU and outer radius of 450 AU, and an inferred heating source of 3000 K. The luminosity of the central star is L similar or equal to 10(4.6) L-circle dot. All the nearby progenitor dust was likely evaporated in the explosion leaving only the much older dust lying further out in the circumstellar environment. The combination of our long-term multiwavelength monitoring data and the evidence from the progenitor analysis leads us to support the scenario of a weak electron-capture supernova explosion in a super-asymptotic giant branch progenitor star (of initial mass 6-8 M-circle dot) embedded within a thick circumstellar gaseous envelope. We suggest that all of main properties of the electron-capture SN phenomenon are observed in SN 2008S and future observations may allow a definitive answer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-cadence, multiwavelength optical observations of a solar active region (NOAA AR 10969), obtained with the Swedish Solar Telescope, are presented. Difference imaging of white light continuum data reveals a white-light brightening, 2 minutes in duration, linked to a cotemporal and cospatial C2.0 flare event. The flare kernel observed in the white-light images has a diameter of 300 km, thus rendering it below the resolution limit of most space-based telescopes. Continuum emission is present only during the impulsive stage of the flare, with the effects of chromospheric emission subsequently delayed by approximate to 2 minutes. The localized flare emission peaks at 300% above the quiescent flux. This large, yet tightly confined, increase in emission is only resolvable due to the high spatial resolution of the Swedish Solar Telescope. An investigation of the line-of-sight magnetic field derived from simultaneous MDI data shows that the continuum brightening is located very close to a magnetic polarity inversion line. In addition, an Ha flare ribbon is directed along a region of rapid magnetic energy change, with the footpoints of the ribbon remaining cospatial with the observed white-light brightening throughout the duration of the flare. The observed flare parameters are compared with current observations and theoretical models for M- and X-class events and we determine the observed white-light emission is caused by radiative back-warming. We suggest that the creation of white-light emission is a common feature of all solar flares.