158 resultados para Systems Engineering


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a new packet scheduling scheme called agent-based WFQ to control and maintain QoS parameters in virtual private networks (VPNs) within the confines of adaptive networks. Future networks are expected to be open heterogeneous environments consisting of more than one network operator. In this adaptive environment, agents act on behalf of users or third-party operators to obtain the best service for their clients and maintain those services through the modification of the scheduling scheme in routers and switches spanning the VPN. In agent-based WFQ, an agent on the router monitors the accumulated queuing delay for each service. In order to control and to keep the end-to-end delay within the bounds, the weights for services are adjusted dynamically by agents on the routers spanning the VPN. If there is an increase or decrease in queuing delay of a service, an agent on a downstream router informs the upstream routers to adjust the weights of their queues. This keeps the end-to-end delay of services within the specified bounds and offers better QoS compared to VPNs using static WFQ. This paper also describes the algorithm for agent-based WFQ, and presents simulation results. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The identification of non-linear systems using only observed finite datasets has become a mature research area over the last two decades. A class of linear-in-the-parameter models with universal approximation capabilities have been intensively studied and widely used due to the availability of many linear-learning algorithms and their inherent convergence conditions. This article presents a systematic overview of basic research on model selection approaches for linear-in-the-parameter models. One of the fundamental problems in non-linear system identification is to find the minimal model with the best model generalisation performance from observational data only. The important concepts in achieving good model generalisation used in various non-linear system-identification algorithms are first reviewed, including Bayesian parameter regularisation and models selective criteria based on the cross validation and experimental design. A significant advance in machine learning has been the development of the support vector machine as a means for identifying kernel models based on the structural risk minimisation principle. The developments on the convex optimisation-based model construction algorithms including the support vector regression algorithms are outlined. Input selection algorithms and on-line system identification algorithms are also included in this review. Finally, some industrial applications of non-linear models are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article presents a novel classification of wavelet neural networks based on the orthogonality/non-orthogonality of neurons and the type of nonlinearity employed. On the basis of this classification different network types are studied and their characteristics illustrated by means of simple one-dimensional nonlinear examples. For multidimensional problems, which are affected by the curse of dimensionality, the idea of spherical wavelet functions is considered. The behaviour of these networks is also studied for modelling of a low-dimension map.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the learning of a wide class of single-hidden-layer feedforward neural networks (SLFNs) with two sets of adjustable parameters, i.e., the nonlinear parameters in the hidden nodes and the linear output weights. The main objective is to both speed up the convergence of second-order learning algorithms such as Levenberg-Marquardt (LM), as well as to improve the network performance. This is achieved here by reducing the dimension of the solution space and by introducing a new Jacobian matrix. Unlike conventional supervised learning methods which optimize these two sets of parameters simultaneously, the linear output weights are first converted into dependent parameters, thereby removing the need for their explicit computation. Consequently, the neural network (NN) learning is performed over a solution space of reduced dimension. A new Jacobian matrix is then proposed for use with the popular second-order learning methods in order to achieve a more accurate approximation of the cost function. The efficacy of the proposed method is shown through an analysis of the computational complexity and by presenting simulation results from four different examples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this letter, a standard postnonlinear blind source separation algorithm is proposed, based on the MISEP method, which is widely used in linear and nonlinear independent component analysis. To best suit a wide class of postnonlinear mixtures, we adapt the MISEP method to incorporate a priori information of the mixtures. In particular, a group of three-layered perceptrons and a linear network are used as the unmixing system to separate sources in the postnonlinear mixtures, and another group of three-layered perceptron is used as the auxiliary network. The learning algorithm for the unmixing system is then obtained by maximizing the output entropy of the auxiliary network. The proposed method is applied to postnonlinear blind source separation of both simulation signals and real speech signals, and the experimental results demonstrate its effectiveness and efficiency in comparison with existing methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A continuous forward algorithm (CFA) is proposed for nonlinear modelling and identification using radial basis function (RBF) neural networks. The problem considered here is simultaneous network construction and parameter optimization, well-known to be a mixed integer hard one. The proposed algorithm performs these two tasks within an integrated analytic framework, and offers two important advantages. First, the model performance can be significantly improved through continuous parameter optimization. Secondly, the neural representation can be built without generating and storing all candidate regressors, leading to significantly reduced memory usage and computational complexity. Computational complexity analysis and simulation results confirm the effectiveness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper analyses multivariate statistical techniques for identifying and isolating abnormal process behaviour. These techniques include contribution charts and variable reconstructions that relate to the application of principal component analysis (PCA). The analysis reveals firstly that contribution charts produce variable contributions which are linearly dependent and may lead to an incorrect diagnosis, if the number of principal components retained is close to the number of recorded process variables. The analysis secondly yields that variable reconstruction affects the geometry of the PCA decomposition. The paper further introduces an improved variable reconstruction method for identifying multiple sensor and process faults and for isolating their influence upon the recorded process variables. It is shown that this can accommodate the effect of reconstruction, i.e. changes in the covariance matrix of the sensor readings and correctly re-defining the PCA-based monitoring statistics and their confidence limits. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Local Controller Networks (LCNs) provide nonlinear control by interpolating between a set of locally valid, subcontrollers covering the operating range of the plant. Constructing such networks typically requires knowledge of valid local models. This paper describes a new genetic learning approach to the construction of LCNs directly from the dynamic equations of the plant, or from modelling data. The advantage is that a priori knowledge about valid local models is not needed. In addition to allowing simultaneous optimisation of both the controller and validation function parameters, the approach aids transparency by ensuring that each local controller acts independently of the rest at its operating point. It thus is valuable for simultaneous design of the LCNs and identification of the operating regimes of an unknown plant. Application results from a highly nonlinear pH neutralisation process and its associated neural network representation are utilised to illustrate these issues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the development of neural model-based control strategies for the optimisation of an industrial aluminium substrate disk grinding process. The grindstone removal rate varies considerably over a stone life and is a highly nonlinear function of process variables. Using historical grindstone performance data, a NARX-based neural network model is developed. This model is then used to implement a direct inverse controller and an internal model controller based on the process settings and previous removal rates. Preliminary plant investigations show that thickness defects can be reduced by 50% or more, compared to other schemes employed. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modelling and control of nonlinear dynamical systems is a challenging problem since the dynamics of such systems change over their parameter space. Conventional methodologies for designing nonlinear control laws, such as gain scheduling, are effective because the designer partitions the overall complex control into a number of simpler sub-tasks. This paper describes a new genetic algorithm based method for the design of a modular neural network (MNN) control architecture that learns such partitions of an overall complex control task. Here a chromosome represents both the structure and parameters of an individual neural network in the MNN controller and a hierarchical fuzzy approach is used to select the chromosomes required to accomplish a given control task. This new strategy is applied to the end-point tracking of a single-link flexible manipulator modelled from experimental data. Results show that the MNN controller is simple to design and produces superior performance compared to a single neural network (SNN) controller which is theoretically capable of achieving the desired trajectory. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The divide-and-conquer approach of local model (LM) networks is a common engineering approach to the identification of a complex nonlinear dynamical system. The global representation is obtained from the weighted sum of locally valid, simpler sub-models defined over small regions of the operating space. Constructing such networks requires the determination of appropriate partitioning and the parameters of the LMs. This paper focuses on the structural aspect of LM networks. It compares the computational requirements and performances of the Johansen and Foss (J&F) and LOLIMOT tree-construction algorithms. Several useful and important modifications to each algorithm are proposed. The modelling performances are evaluated using real data from a pilot plant of a pH neutralization process. Results show that while J&F achieves a more accurate nonlinear representation of the pH process, LOLIMOT requires significantly less computational effort.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with Takagi-Sugeno (TS) fuzzy model identification of nonlinear systems using fuzzy clustering. In particular, an extended fuzzy Gustafson-Kessel (EGK) clustering algorithm, using robust competitive agglomeration (RCA), is developed for automatically constructing a TS fuzzy model from system input-output data. The EGK algorithm can automatically determine the 'optimal' number of clusters from the training data set. It is shown that the EGK approach is relatively insensitive to initialization and is less susceptible to local minima, a benefit derived from its agglomerate property. This issue is often overlooked in the current literature on nonlinear identification using conventional fuzzy clustering. Furthermore, the robust statistical concepts underlying the EGK algorithm help to alleviate the difficulty of cluster identification in the construction of a TS fuzzy model from noisy training data. A new hybrid identification strategy is then formulated, which combines the EGK algorithm with a locally weighted, least-squares method for the estimation of local sub-model parameters. The efficacy of this new approach is demonstrated through function approximation examples and also by application to the identification of an automatic voltage regulation (AVR) loop for a simulated 3 kVA laboratory micro-machine system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A conventional local model (LM) network consists of a set of affine local models blended together using appropriate weighting functions. Such networks have poor interpretability since the dynamics of the blended network are only weakly related to the underlying local models. In contrast, velocity-based LM networks employ strictly linear local models to provide a transparent framework for nonlinear modelling in which the global dynamics are a simple linear combination of the local model dynamics. A novel approach for constructing continuous-time velocity-based networks from plant data is presented. Key issues including continuous-time parameter estimation, correct realisation of the velocity-based local models and avoidance of the input derivative are all addressed. Application results are reported for the highly nonlinear simulated continuous stirred tank reactor process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel methodology is proposed for the development of neural network models for complex engineering systems exhibiting nonlinearity. This method performs neural network modeling by first establishing some fundamental nonlinear functions from a priori engineering knowledge, which are then constructed and coded into appropriate chromosome representations. Given a suitable fitness function, using evolutionary approaches such as genetic algorithms, a population of chromosomes evolves for a certain number of generations to finally produce a neural network model best fitting the system data. The objective is to improve the transparency of the neural networks, i.e. to produce physically meaningful

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comparison of dc characteristics of fully depleted double-gate (DG) MOSFETs with respect to low-power circuit applications and device scaling has been performed by two-dimensional device simulation. Three different DG MOSFET structures including a conventional N+ polysilicon gate device with highly doped Si layer, an asymmetrical P+/N+ polysilicon gate device with low doped Si layer and a midgap metal gate device with low doped Si layer have been analysed. It was found that DG MOSFET with mid-gap metal, gates yields the best dc parameters for given off-state drain leakage current and highest immunity to the variation of technology parameters (gate length, gate oxide thickness and Si layer thickness). It is also found that an asymmetrical P+/N+ polysilicon gate DG MOSFET design offers comparable dc characteristics, but better parameter immunity to technology tolerances than a conventional DG MOSFET. (C) 2004 Elsevier Ltd. All rights reserved.