66 resultados para Supervised classifiers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Around 10-15% of patients with locally advanced rectal cancer (LARC) undergo a pathologically complete response (TRG4) to neoadjuvant chemoradiotherapy; the rest of patients exhibit a spectrum of tumour regression (TRG1-3). Understanding therapy-related genomic alterations may help us to identify underlying biology or novel targets associated with response that could increase the efficacy of therapy in patients that do not benefit from the current standard of care.
Methods: 48 FFPE rectal cancer biopsies and matched resections were analysed using the WG-DASL HumanHT-12_v4 Beadchip array on the illumina iScan. Bioinformatic analysis was conducted in Partek genomics suite and R studio. Limma and glmnet packages were used to identify genes differentially expressed between tumour regression grades. Validation of microarray results will be carried out using IHC, RNAscope and RT-PCR.
Results: Immune response genes were observed from supervised analysis of the biopsies which may have predictive value. Differential gene expression from the resections as well as pre and post therapy analysis revealed induction of genes in a tumour regression dependent manner. Pathway mapping and Gene Ontology analysis of these genes suggested antigen processing and natural killer mediated cytotoxicity respectively. The natural killer-like gene signature was switched off in non-responders and on in the responders. IHC has confirmed the presence of Natural killer cells through CD56+ staining.
Conclusion: Identification of NK cell genes and CD56+ cells in patients responding to neoadjuvant chemoradiotherapy warrants further investigation into their association with tumour regression grade in LARC. NK cells are known to lyse malignant cells and determining whether their presence is a cause or consequence of response is crucial. Interrogation of the cytokines upregulated in our NK-like signature will help guide future in vitro models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a new general purpose classifier named Averaged Extended Tree Augmented Naive Bayes (AETAN), which is based on combining the advantageous characteristics of Extended Tree Augmented Naive Bayes (ETAN) and Averaged One-Dependence Estimator (AODE) classifiers. We describe the main properties of the approach and algorithms for learning it, along with an analysis of its computational time complexity. Empirical results with numerous data sets indicate that the new approach is superior to ETAN and AODE in terms of both zero-one classification accuracy and log loss. It also compares favourably against weighted AODE and hidden Naive Bayes. The learning phase of the new approach is slower than that of its competitors, while the time complexity for the testing phase is similar. Such characteristics suggest that the new classifier is ideal in scenarios where online learning is not required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infection is a leading cause of neonatal morbidity and mortality worldwide. Premature neonates are particularly susceptible to infection because of physiologic immaturity, comorbidity, and extraneous medical interventions. Additionally premature infants are at higher risk of progression to sepsis or severe sepsis, adverse outcomes, and antimicrobial toxicity. Currently initial diagnosis is based upon clinical suspicion accompanied by nonspecific clinical signs and is confirmed upon positive microbiologic culture results several days after institution of empiric therapy. There exists a significant need for rapid, objective, in vitro tests for diagnosis of infection in neonates who are experiencing clinical instability. We used immunoassays multiplexed on microarrays to identify differentially expressed serum proteins in clinically infected and non-infected neonates. Immunoassay arrays were effective for measurement of more than 100 cytokines in small volumes of serum available from neonates. Our analyses revealed significant alterations in levels of eight serum proteins in infected neonates that are associated with inflammation, coagulation, and fibrinolysis. Specifically P- and E-selectins, interleukin 2 soluble receptor alpha, interleukin 18, neutrophil elastase, urokinase plasminogen activator and its cognate receptor, and C-reactive protein were observed at statistically significant increased levels. Multivariate classifiers based on combinations of serum analytes exhibited better diagnostic specificity and sensitivity than single analytes. Multiplexed immunoassays of serum cytokines may have clinical utility as an adjunct for rapid diagnosis of infection and differentiation of etiologic agent in neonates with clinical decompensation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently there has been an increasing interest in the development of new methods using Pareto optimality to deal with multi-objective criteria (for example, accuracy and architectural complexity). Once one has learned a model based on their devised method, the problem is then how to compare it with the state of art. In machine learning, algorithms are typically evaluated by comparing their performance on different data sets by means of statistical tests. Unfortunately, the standard tests used for this purpose are not able to jointly consider performance measures. The aim of this paper is to resolve this issue by developing statistical procedures that are able to account for multiple competing measures at the same time. In particular, we develop two tests: a frequentist procedure based on the generalized likelihood-ratio test and a Bayesian procedure based on a multinomial-Dirichlet conjugate model. We further extend them by discovering conditional independences among measures to reduce the number of parameter of such models, as usually the number of studied cases is very reduced in such comparisons. Real data from a comparison among general purpose classifiers is used to show a practical application of our tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose:
A number of independent gene expression profiling studies have identified transcriptional subtypes in colorectal cancer (CRC) with potential diagnostic utility, culminating in publication of a CRC Consensus Molecular Subtype classification. The worst prognostic subtype has been defined by genes associated with stem-like biology. Recently, it has been shown that the majority of genes associated with this poor prognostic group are stromal-derived. We investigated the potential for tumor misclassification into multiple diagnostic subgroups based on tumoral region sampled.

Experimental Design:
We performed multi-region tissue RNA extraction/transcriptomic analysis using Colorectal Specific Arrays on invasive front, central tumor and lymph node regions selected from tissue samples from 25 CRC patients.

Results:
We identified a consensus 30 gene list which represents the intratumoral heterogeneity within a cohort of primary CRC tumors. Using a series of online datasets, we showed that this gene list displays prognostic potential (HR=2.914 (CI 0.9286-9.162) in stage II/III CRC patients, but in addition we demonstrated that these genes are stromal derived, challenging the assumption that poor prognosis tumors with stem-like biology have undergone a widespread Epithelial Mesenchymal Transition (EMT). Most importantly, we showed that patients can be simultaneously classified into multiple diagnostically relevant subgroups based purely on the tumoral region analysed.

Conclusions:
Gene expression profiles derived from the non-malignant stromal region can influence assignment of CRC transcriptional subtypes, questioning the current molecular classification dogma and highlighting the need to consider pathology sampling region and degree of stromal infiltration when employing transcription-based classifiers to underpin clinical decision-making in CRC.