69 resultados para Substances psychoactives
Resumo:
Diverse parameters, including chaotropicity, can limit the function of cellular systems and thereby determine the extent of Earth's biosphere. Whereas parameters such as temperature, hydrophobicity, pressure, pH, Hofmeister effects, and water activity can be quantified via standard scales of measurement, the chao-/kosmotropic activities of environmentally ubiquitous substances have no widely accepted, universal scale. We developed an assay to determine and quantify chao-/kosmotropicity for 97 chemically diverse substances that can be universally applied to all solutes. This scale is numerically continuous for the solutes assayed (from +361kJkg-1mol-1 for chaotropes to -659kJkg-1mol-1 for kosmotropes) but there are key points that delineate (i) chaotropic from kosmotropic substances (i.e. chaotropes =+4; kosmotropes =-4kJkg-1mol-1); and (ii) chaotropic solutes that are readily water-soluble (log P<1.9) from hydrophobic substances that exert their chaotropic activity, by proxy, from within the hydrophobic domains of macromolecular systems (log P>1.9). Examples of chao-/kosmotropicity values are, for chaotropes: phenol +143, CaCl2 +92.2, MgCl2 +54.0, butanol +37.4, guanidine hydrochloride +31.9, urea +16.6, glycerol [>6.5M] +6.34, ethanol +5.93, fructose +4.56; for kosmotropes: proline -5.76, sucrose -6.92, dimethylsulphoxide (DMSO) -9.72, mannitol -6.69, trehalose -10.6, NaCl -11.0, glycine -14.2, ammonium sulfate -66.9, polyethylene glycol- (PEG-)1000 -126; and for relatively neutral solutes: methanol, +3.12, ethylene glycol +1.66, glucose +1.19, glycerol [<5M] +1.06, maltose -1.43 (kJkg-1mol-1). The data obtained correlate with solute interactions with, and structure-function changes in, enzymes and membranes. We discuss the implications for diverse fields including microbial ecology, biotechnology and astrobiology.
Resumo:
Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (~10's s) exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal activity.
Resumo:
Solid-phase extraction (SPE) and direct competitive chemiluminescence enzyme immunoassay (dcCL-EIA) were combined for the detection of organophosphorus pesticides (OPs) in environmental water samples. dcCL-EIA based on horseradish peroxidase labeled with a broad-specificity monoclonal antibody against OPs was developed, and the effects of several physicochemical parameters on dcCL-EIA performance were studied. SPE was used for the pretreatment of water samples to remove interfering substances and to concentrate the OP analytes. The coupling of SPE and dcCL-EIA can detect seven OPs (parathion, coumaphos, phoxim, quinalphos, triazophos, dichlofenthion, and azinphos-ethyl) with the limit of quantitation below 0.1 ng/mL. The recoveries of OPs from spiked water samples ranged from 62.5% to 131.7% by SPE-dcCL-EIA and 69.5% to 112.3% by SPE-HPLC-MS/MS. The screening of OP residues in real-world environmental water samples by the developed SPE-dcCL-EIA and their confirmatory analysis using SPE-HPLC-MS/MS demonstrated that the assay is ideally suited as a monitoring method for OP residues prior to chromatographic analysis.
Resumo:
Conventional water purification and disinfection generally involve potentially hazardous substances, some of which known to be carcinogenic in nature. Titanium dioxide photocatalytic processes provide an effective route to destroy hazardous organic contaminants. This present work explores the possibility of the removal of organic pollutants (phenol) by the application of TiO2 based photocatalysts. The production of series of metal ions doped or undoped TiO2 were carried out via a sol–gel method and a wet impregnation method. Undoped TiO2 and Cu doped TiO2 showed considerable phenol degradation. The efficiency of photocatalytic reaction largely depends on the photocatalysts and the methods of preparation the photocatalysts. The doping of Fe, Mn, and humic acid at 1.0 M% via sol–gel methods were detrimental for phenol degradation. The inhibitory effect of initial phenol concentration on initial phenol degradation rate reveals that photocatalytic decomposition of phenol follows pseudo zero order reaction kinetics. A concentration of > 1 g/L TiO2 and Cu doped TiO2 is required for the effective degradation of 50 mg/L of phenol at neutral pH. The rise in OH- at a higher pH values provides more hydroxyl radicals which are beneficial of phenol degradation. However, the competition among phenoxide ion, Cl- and OH- for the limited number of reactive sites on TiO2 will be a negative influence in the generation of hydroxyl radical. The dependence of phenol degradation rate on the light intensity was observed, which also implies that direct sunlight can be a substitute for the UV lamps and that photocatalytic treatment of organic pollutants using this technique shows some promise.
Resumo:
Male infertility is a major cause of problems for many couples in conceiving a child. Recently, lifestyle pastimes such as alcohol, tobacco and marijuana have been shown to have further negative effects on male reproduction. The endocannabinoid system (ECS), mainly through the action of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) at cannabinoid (CB(1), CB(2)) and vanilloid (TRPV1) receptors, plays a crucial role in controlling functionality of sperm, with a clear impact on male reproductive potential. Here, sperm from fertile and infertile men were used to investigate content (through LC-ESI-MS), mRNA (through quantitative RT-PCR), protein (through Western Blotting and ELISA) expression, and functionality (through activity and binding assays) of the main metabolic enzymes of AEA and 2-AG (NAPE-PLD and FAAH, for AEA; DAGL and MAGL for 2-AG), as well as of their binding receptors CB(1), CB(2) and TRPV1. Our findings show a marked reduction of AEA and 2-AG content in infertile seminal plasma, paralleled by increased degradation: biosynthesis ratios of both substances in sperm from infertile versus fertile men. In addition, TRPV1 binding was detected in fertile sperm but was undetectable in infertile sperm, whereas that of CB(1) and CB(2) receptors was not statistically different in the two groups. In conclusion, this study identified unprecedented alterations of the ECS in infertile sperm, that might impact on capacitation and acrosome reaction, and hence fertilization outcomes. These alterations might also point to new biomarkers to determine male reproductive defects, and identify distinct ECS elements as novel targets for therapeutic exploitation of ECS-oriented drugs to treat male fertility problems.
Resumo:
Despite concern about the harmful effects of substances contained in various
plastic consumer products, little attention has focused on the more heavily
exposed women working in the plastics industry. Through a review of the
toxicology, industrial hygiene, and epidemiology literatures in conjunction
with qualitative research, this article explores occupational exposures in producing
plastics and health risks to workers, particularly women, who make up
a large part of the workforce. The review demonstrates that workers are
exposed to chemicals that have been identified as mammary carcinogens and
endocrine disrupting chemicals, and that the work environment is heavily
contaminated with dust and fumes. Consequently, plastics workers have a
body burden that far exceeds that found in the general public.
Resumo:
The paper seeks to give an account of what it is for an individual to instantiate thisness, and how an individual and its thisness are related (where the thisness of an individual x is the property of being identical to x). Such an account is completely lacking in the literature, even among those who defend and make use of thisness. My approach is to seek out a model for the instantiation of thisness by canvassing realist accounts of the substance/attribute relation , and then make appropriate modifications to the most likely candidate in order to accommodate an individual's instantiation of thisness (the accounts cannot be strictly identical for reasons that I explain). I go on to suggest that the model can be appropriately applied in the case of other individuals which might instantiate thisness: for example, persons and events (where these are conceived as fundamental categories of ontology distinct from material substances).
Resumo:
Ecotoxicological screening of dust sampled throughout a Kenyan tannery was conducted using a luminescence (lux)-based bacterial biosensor for both solid and liquid assays. This was complemented by chemical analysis in an attempt to identify possible causative toxic components. The biosensor results showed a highly significant (p <0.001) difference in both solid and liquid phase toxicity in samples collected from various identified sampling points in the tannery. A positive correlation was observed between results of the solid and liquid phase techniques, for most of the sampling points indicating that the toxic contaminants were bioavailable both in the solid and liquid state. However, the results generally indicated toxicity associated with liquid phase except certain areas in solid phase such as chemical handling, buffing area and weighing. The most toxic tannery area identified was the weighing area (p <0.001), showing the lowest bioluminescence for both the solid (0.38 +/- 2.21) and liquid phases (0.01 +/- 0.001). Chromium was the metal present in the highest concentration indicating levels higher than the stipulated regulatory requirement of 0.5 mg Cr/m3 for total Cr (highest Cr concentration was at chemical handling at 209.24 mg l(-1)) in all dust samples. The weighing area had the highest Ni concentration (1.87 mg l(-1)) and the chemical handling area showed the highest Zn concentration (31.9 mg l(-1)). These results raise environmental health concerns, as occupational exposure to dust samples from this site has been shown to give rise to elevated concentrations (above the stipulated levels) of chromium in blood, urine and some body tissues, with inhalation being the main route. Health and Safety Executive (HSE), UK, and American Conference of Governmental Industrial Hygienist (ACGIH) and National Institute for Occupational Safety and Health (NIOSH), USA stipulates an occupational exposure limit of 0.5 mg Cr/m3 (8 h TWA) for total chromium. However, schedule 1 of Controls of substances hazardous to health (COSHH) regulations developed by HSE, indicate 0.05 mg m3 (8 h TWA reference periods) to be the limit for Cr (VI) exposure. The exposure limit for individual (e.g., Cr, Zn, Ni etc.) contaminants (homogeneity) was not exceeded, but potential impact of heterogeneity (multi-element synergistic effect) on toxicity requires application of the precautionary principle.
Resumo:
The introduction of perfluorocarbons (PFCs) and, more recently, semifluorinated alkanes (SFAs) has greatly facilitated vitreoretinal surgery. A distinction is made between the use of these substances as intraoperative tools and internal tamponade agents. This article reviews the physical and chemical properties of PFCs and SFAs and discusses the indications, results, and complications. The effectiveness of these substances as internal tamponade agents is discussed with reference to the specific gravity, contact angle, viscosity and ability to fill model eye chambers and the vitreous cavity. The evidence for the toxicity in animal and human is examined. Copyright (C) 2000 by W.B. Saunders Company.