261 resultados para Structural engineering.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper summarises the results obtained from non-linear finite-element analysis (NLFEA) of a series of reinforced-concrete one-way slabs with various boundary conditions representative of a bridge deck slab strip in which compressive membrane action governs the structural behaviour. The application of NLFEA for the optimum analysis and design of in-plane restrained concrete slabs is explored. An accurate material model and various equation solution methods were assessed to find a suitable finite-element method for the analysis of concrete slabs in which arching action occurs. Finally, the results from the NLFEA are compared and validated with those from various experimental test data. Significantly, the numerical analysis was able to model the arching action that occurred as a result of external in-plane restraint at the supports and which enhanced the ultimate strength of the slab. The NLFEA gave excellent predictions for the ultimate load-carrying capacity and far more accurate predictions than those obtained using standard flexural or elastic theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes an experimental investigation of the behaviour of corroded reinforced concrete beams. These have been stored in a chloride environment for a period of 26 years under service loading so as to be representative of real structural and environmental conditions. The configuration and the widths of the cracks in the two seriously corroded short-span beams were depicted carefully, and then the beams were tested until failure by a three-point loading system. Another two beams of the same age but without corrosion were also tested as control specimens. A short span arrangement was chosen to investigate any effect of a reduction in the area and bond strength of the reinforcement on shear capacity. The relationship of load and deflection was recorded so as to better understand the mechanical behaviour of the corroded beams, together with the slip of the tensile bars. The corrosion maps and the loss of area of the tensile bars were also described after having extracted the corroded bars from the concrete beams. Tensile tests of the main longitudinal bars were also carried out. The residual mechanical behaviour of the beams is discussed in terms of the experimental results and the cracking maps. The results show that the corrosion of the reinforcement in the beams induced by chloride has a very important effect on the mechanical behaviour of the short-span beams, as loss of cross-sectional area and bond strength have a very significant effect on the bending capacity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-compacting concrete (SCC) flows into place and around obstructions under its own weight to fill the formwork completely and self-compact without any segregation and blocking. Elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. This investigation aimed to show possible applicability of genetic programming (GP) to model and formulate the fresh and hardened properties of self-compacting concrete (SCC) containing pulverised fuel ash (PFA) based on experimental data. Twenty-six mixes were made with 0.38 to 0.72 water-to-binder ratio (W/B), 183–317 kg/m3 of cement content, 29–261 kg/m3 of PFA, and 0 to 1% of superplasticizer, by mass of powder. Parameters of SCC mixes modelled by genetic programming were the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength at 7, 28 and 90 days. GP is constructed of training and testing data using the experimental results obtained in this study. The results of genetic programming models are compared with experimental results and are found to be quite accurate. GP has showed a strong potential as a feasible tool for modelling the fresh properties and the compressive strength of SCC containing PFA and produced analytical prediction of these properties as a function as the mix ingredients. Results showed that the GP model thus developed is not only capable of accurately predicting the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength used in the training process, but it can also effectively predict the above properties for new mixes designed within the practical range with the variation of mix ingredients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:


The permeability of concrete is influenced by the porosity and the interconnectivity of the pores in the cement paste and the microcracks in concrete, especially in the interface of paste-aggregate. The movements of gases, liquids, and ions through concrete is important because of their interactions with concrete constituents, including pore water, which can alter the integrity of concrete directly and indirectly, leading to the deterioration of structures. This study reports the findings from an investigation carried out to study the effect of the mixture variations on the durability of medium- and high-strength self-consolidating concrete (SCC). The mixture variations studied include the type of mineral admixtures, such as limestone powder (LSP) and pulverized fuel ash (PFA), and viscositymodifying admixtures (VMA) for both medium- and high-strength SCC. Air permeability, water permeability, capillary absorption, and chloride diffusivity were used to assess the durability of SCC mixtures in comparison with normal, vibrated concretes. The results showed that SCC mixtures, for medium- and high-strength grades using PFA followed by LSP, have lower permeability properties compared with normal concretes. SCC made with VMA had a higher sorptivity, air permeability, and water permeability compared with other SCC mixtures, which can be attributed to higher watercement ratio (w/c) and lack of pore filling effect. An in-place migration coefficient was obtained using the in-place ion migration test. This was used to compare the potential diffusivity of different concretes. The results indicated that SCC, for both grades of strength, made with PFA showed much lower diffusivity values in comparison with other mixtures, whereas the SCC mixtures with VMA showed higher diffusivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A techno-economic model of an autonomous wave-powered desalination plant is developed and indicates that fresh water can be produced for as little as £0.45/m3. The advantages of an autonomous wave-powered desalination plant are also discussed indicating that the real value of the system is enhanced due to its flexibility for deployment and reduced environmental impact. The modelled plant consists of the Oyster wave energy converter, conventional reverse osmosis membranes and a pressure exchanger–intensifier for energy recovery. A time-domain model of the plant is produced using wave-tank experimentation to calibrate the model of Oyster, manufacturer's data for the model of the reverse osmosis membranes and a hydraulic model of the pressure exchanger–intensifier. The economic model of the plant uses best-estimate cost data which are reduced to annualised costs to facilitate the calculation of the cost of water. Finally, the barriers to the deployment of this technology are discussed, but they are not considered insurmountable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increased productivity and improved working environment have had high priority in the development of concrete construction over the last decade. Development of a material not needing vibration for compaction—i.e. selfcompacting concrete (SCC)—has successfully met the challenge and is now increasingly being used in routine practice. The key to the improvement of fresh concrete performance has been nanoscale tailoring of molecules for surface active admixtures, as well as improved understanding of particle packing and of the role of mineral surfaces in cementitious matrixes. Fundamental studies of rheological behaviour of cementitious particle suspensions were soon expanded to extensive innovation programmes incorporating applied research, site experiments, instrumented full scale applications supporting technology, standards and guides, information efforts as well as training programmes. The major impact of the introduction of SCC is connected to the production process. The choice and handling of constituents are modified as well as mix design, batching, mixing and transporting. The productivity is drastically improved through elimination of vibration compaction and process reorganisation. The working environment is significantly enhanced through avoidance of vibration induced damages, reduced noise and improved safety. Additionally, the technology is improving performance in terms of hardened material properties like surface quality, strength and durability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports a study carried out to assess the impact of the use of self-compacting concrete (SCC) on bond and interfacial properties around steel reinforcement in practical concrete element. The pull-out tests were carried out to determine bond strength between reinforcing steel bar and concrete, and the depth-sensing nano-indentation technique was used to evaluate the elastic modulus and micro-strength of the interracial transition zone (ITZ) around steel reinforcement. The bond and interracial properties around deformed steel bars in different SCC mixes with strength grades of 35 MPa and 60 MPa (C35, C60) were examined together with those in conventional vibrated reference concrete with the same strength grades. The results showed that the maximum bond strength decreased when the diameter of the steel bar increased from 12 to 20 mm. The normalised bond strengths of the SCC mixes were found to be about 10-40% higher than those of the reference mixes for both bar diameters (12 and 20 mm). The study of the interfacial properties revealed that the elastic modulus and the micro-strength of the ITZ were lower on the bottom side of a horizontal steel bar than on the top side, particularly for the vibrated reference concrete. The difference of ITZ properties between top and bottom side of the horizontal steel bar appeared to be less pronounced for the SCC mixes than for the corresponding reference mixes.