223 resultados para Special regime


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified abstract version of the Comprehensive Aquatic Simulation Model (CASM) is found to exhibit three types of folded bifurcations due to nutrient loading. The resulting bifurcation diagrams account for nonlinear dynamics such as regime shifts and cyclic changes between clear-water state and turbid state that have actually been observed in real lakes. In particular, pulse-perturbation simulations based on the model presented suggest that temporal behaviors of real lakes after biomanipulations can be explained by pulse-dynamics in complex ecosystems, and that not only the amplitude (manipulated abundance of organisms) but also the phase (timing) is important for restoring lakes by biomanipulation. Ecosystem management in terms of possible irreversible changes in ecosystems induced by regime shifts is also discussed. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on chevrons (herringbonelike patterns) observed in homeotropically aligned liquid crystals with high electric conductivity. We focus our attention on two types of chevrons observed in the conduction regime. The threshold voltage and the characteristic double periodicity of chevrons (i.e., the short wavelength lambda(1) of the striated rolls and the long wavelength lambda(2) Of the chevron bands) have been measured as functions of the applied electric frequency f. With the aid of a crossed polarizer set, we have, in addition, determined the director field which shows a periodic in-plane rotation for our chevrons (with a wavelength lambda(2)) We arrived at the types of chevrons after qualitatively different bifurcation sequences with increasing voltage. The frequency dependence of lambda(2) also shows a qualitatively different behavior with respect to the two types of chevrons. The experimental results are discussed in terms of recent theoretical investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new ion radiation-pressure acceleration regime, the "leaky light sail," is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10(19) W/cm(2). 100 MeV proton beams are obtained by increasing the intensities to 2 x 10(20) W/cm(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the dominant mechanism for ion acceleration is the laser radiation pressure, the conversion efficiency of the laser energy into the energy of relativistic ions may be very high. Stability analysis of a thin plasma layer accelerated by the radiation pressure shows that Raleigh-Taylor instability may enhance plasma inhomogeneity. In the linear stage of instability, the plasma layer decays into separate bunches, which are accelerated by the radiation pressure similarly to clusters accelerated under the action of an electromagnetic wave. The energy and luminosity of an ion beam accelerated in the radiation-pressure-dominated regime are calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the acceleration of ion beams from ultrathin diamondlike carbon foils of thickness 50, 30, and 10 nm irradiated by ultrahigh contrast laser pulses at intensities of similar to 7 X 10(19) W/cm(2). An unprecedented maximum energy of 185 MeV (15 MeV/u) for fully ionized carbon atoms is observed at the optimum thickness of 30 nm. The enhanced acceleration is attributed to self-induced transparency, leading to strong volumetric heating of the classically overdense electron population in the bulk of the target. Our experimental results are supported by both particle-in-cell (PIC) simulations and an analytical model.