93 resultados para Soils, Salts in.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A field survey was conducted to investigate the contamination of potentially toxic elements (PTEs) arsenic (As), lead (Pb), chromium (Cr), and nickel (Ni) in Tanzanian agricultural soils and to evaluate their uptake and translocation in maize as proxy to the safety of maize used for human and animal consumption. Soils and maize tissues were sampled from 40 farms in Tanzania and analyzed using inductively coupled plasma-mass spectrometry in the United Kingdom. The results showed high levels of PTEs in both soils and maize tissues above the recommended limits. Nickel levels of up to 34.4 and 56.9mgkg(-1) respectively were found in some maize shoots and grains from several districts. Also, high Pb levels >0.2mgkg(-1) were found in some grains. The grains and shoots with high levels of Ni and Pb are unfit for human and animal consumption. Concentrations of individual elements in maize tissues and soils did not correlate and showed differences in uptake and translocation. However, Ni showed a more efficient transfer from soils to shoots than As, Pb and Cr. Transfer of Cr and Ni from shoots to grains was higher than other elements, implying that whatever amount is assimilated in maize shoots is efficiently mobilized and transferred to grains. Thus, the study recommended to the public to stop consuming and feeding their animals maize with high levels of PTEs for their safety.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Agroecological zones within Bangladesh with low levels of arsenic in groundwater and soils produce rice that is high in arsenic with respect to other producing regions of the globe. Little is known about arsenic cycling in these soils and the labile fractions relevant for plant uptake when flooded. Soil porewater dynamics of field soils (n = 39) were recreated under standardized laboratory conditions to investigate the mobility and interplay of arsenic, Fe, Si, C, and other elements, in relation to rice grain element composition, using the dynamic sampling technique diffusive gradients in thin films (DGT). Based on a simple model using only labile DGT measured arsenic and dissolved organic carbon (DOC), concentrations of arsenic in Aman (Monsoon season) rice grain were predicted reliably. DOC was the strongest determinant of arsenic solid-solution phase partitioning, while arsenic release to the soil porewater was shown to be decoupled from that of Fe. This study demonstrates the dual importance of organic matter (OM), in terms of enhancing arsenic release from soils, while reducing bioavailability by sequestering arsenic in solution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Arsenic (As) contamination of paddy soils threatens rice cultivation and the health of populations relying on rice as a staple crop. In the present study, isotopic dilution techniques were used to determine the chemically labile (E value) and phytoavailable (L value) pools of As in a range of paddy soils from Bangladesh, India, and China and two arable soils from the UK varying in the degree and sources of As contamination. The E value accounted for 6.2-21.4% of the total As, suggesting that a large proportion of soil As is chemically nonlabile. L values measured with rice grown under anaerobic conditions were generally larger than those under aerobic conditions, indicating increased potentially phytoavailable pool of As in flooded soils. In an incubation study, As was mobilized into soil pore water mainly as arsenite under flooded conditions, with Bangladeshi soils contaminated by irrigation of groundwater showing a greater potential of As mobilization than other soils. Arsenic mobilization was best predicted by phosphate-extractable As in the soils.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In April 1998, a holding lagoon containing pyrite ore processing waste rich in arsenic, failed and released 5-6 million m(3) of highly polluting sludge and acidic water. Over 2700 ha of the internationally important Doñana National and Natural Parks were contaminated. The area of Natural Park to sustain the greatest impact was known as the Entremuros. This paper presents 0-5 cm soil monitoring data from the Entremuros, from sampling campaigns 6 and 18 months after the disaster; as well as macrophyte root, rhizome and stem data from samples taken 18 months after the spill. Results show a clear, decreasing, north-south arsenic soil pollution trend, both 6 and 18 months after the spill, and suggest a small reduction in total soil arsenic levels occurred over time; although a significant increase in extractable arsenic is also noted. The two macrophytes (Typha dominguensis and Scirpus maritimus) studied herein are not accumulating arsenic in stem parts, however, accumulation of arsenic on iron plaque on the roots of these plants may be occurring. Further work is recommended in order to determine the ecotoxicological significance of this process in relation to the avian food-chains of Doñana, and elsewhere.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In April 1998, a holding lagoon containing pyrite ore processing waste, failed and released an estimated 5-6 million m(3) of metal rich sludge and acidic waters into the Rio Guadiamar, SW Spain. Over 2700 ha of the internationally important Doñana National and Natural Parks were contaminated. The sludge component of the waste contained up to 0.6% arsenic. This paper presents an extensive set of 0-5 cm soil analyses results from samples taken 6-8 months after the spill. Data are presented on pseudo-total arsenic levels in these samples, and on arsenic removed by both single batch and sequential extraction techniques. Pseudo-total levels of arsenic in the sludge ranged from 1521 to 3510 mg kg(-1), and a mean 4.4% of this was found to be extractable using 2.5% acetic acid. Soils in the Guadiamar Valley and Entremuros areas (those worst affected by the spill) were found to contain 85.4-782 mg kg(-1) and 7.1-196 mg kg(-1) pseudo-total arsenic, respectively. The mean acetic acid extractable component in these areas was 2.5% and 4.9%, respectively. Background pseudo-total arsenic levels in the soils of the area have been found to be 4.2-13.6 mg kg(-1). Rapid input of acidic waters, and the acidic nature of the sludge itself, may have caused depletion of Mg, Na and K, and to a lesser extent Mn, Ca and PO(4) in the upper 5 cm of the worst affected soils. Sequential extraction results suggest clear As-Fe associations, and possible As-Mn associations within the more soluble phases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Five British former mining and smelting sites were investigated and found to have levels of total Sb of up to 700 mg kg(-1), indicating high levels of contamination which could be potentially harmful. However, this level of Sb was found to be biologically unavailable over a wide range of pH values, indicating that Sb is relatively unreactive and immobile in the surface layers of the soil, remaining where it is deposited rather than leaching into lower horizons and contaminating ground water. Sb, sparingly soluble in water, was unavailable to the bacterial biosensors tested. The bioluminescence responses were correlated to levels of co-contaminants such as arsenic and copper, rather than to Sb concentrations. This suggests that soil contamination by Sb due to mining and smelting operations is not a severe risk to the environment or human health provided that it is present as immobile species and contaminated sites are not used for purposes which increase the threat of exposure to identified receptors. Co-contaminants such as arsenic and copper are more bioavailable and may therefore be seen as a more significant risk.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Copper levels of nearly 500 mg l(-1) were measured in aqueous extracts of soil and sediment samples from the lowlands of Antofagasta. Arsenic levels of up to 183 mg l(-1) were found in river sediments, and 27.5 mg l(-1) arsenic was found at the location of a dam where potable water is extracted. This indicates that the arsenic contamination of water supplies reported recently for the pre-Andes may be a widespread problem throughout the region. Copper contamination from smelting activities also provides cause for concern as elevated levels were found in aqueous extracts of soil up to 20 km away from a smelter. This study went beyond traditional chemical analysis by assessing the potential benefits of using microbial biosensors as an alternative to determination of chemical speciation, to provide an environmentally relevant interpretation of soil/sediment residue levels. This approach is simple to use and enables a rapid, low cost assessment of pollutant bioavailability. It may, therefore, be of use for further investigations in the region and beyond.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Correlation analyses were conducted on nickel (Ni), vanadium (V) and zinc (Zn) oral bioaccessible fractions (BAFs) and selected geochemistry parameters to identify specific controls exerted over trace element bioaccessibility. BAFs were determined by previous research using the unified BARGE method. Total trace element concentrations and soil geochemical parameters were analysed as part of the Geological Survey of Northern Ireland Tellus Project. Correlation analysis included Ni, V and Zn BAFs against their total concentrations, pH, estimated soil organic carbon (SOC) and a further eight element oxides. BAF data were divided into three separate generic bedrock classifications of basalt, lithic arenite and mudstone prior to analysis, resulting in an increase in average correlation coefficients between BAFs and geochemical parameters. Sulphur trioxide and SOC, spatially correlated with upland peat soils, exhibited significant positive correlations with all BAFs in gastric and gastro-intestinal digestion phases, with such effects being strongest in the lithic arenite bedrock group. Significant negative relationships with bioaccessible Ni, V and Zn and their associated total concentrations were observed for the basalt group. Major element oxides were associated with reduced oral trace element bioaccessibility, with Al2O3 resulting in the highest number of significant negative correlations followed by Fe2O3. spatial mapping showed that metal oxides were present at reduced levels in peat soils. The findings illustrate how specific geology and soil geochemistry exert controls over trace element bioaccessibility, with soil chemical factors having a stronger influence on BAF results than relative geogenic abundance. In general, higher Ni, V and Zn bioaccessibility is expected in peat soil types.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Potentially toxic elements (PTEs) including nickel and chromium are often present in soils overlying basalt at concentrations above regulatory guidance values due to the presence of these elements in underlying geology. Oral bioaccessibility testing allows the risk posed by PTEs to human health to be assessed; however, bioaccessibility is controlled by factors including mineralogy, particle size, solid-phase speciation and encapsulation. X-ray diffraction was used to characterise the mineralogy of 12 soil samples overlying Palaeogene basalt lavas in Northern Ireland, and non-specific sequential extraction coupled with chemometric analysis was used to determine the distribution of elements amongst soil components in 3 of these samples. The data obtained were related to total concentration and oral bioaccessible concentration to determine whether a relationship exists between the overall concentrations of PTEs, their bioaccessibility and the soils mineralogy and geochemistry. Gastric phase bioaccessible fraction (BAF %) ranged from 0.4 to 5.4 % for chromium in soils overlying basalt and bioaccessible and total chromium concentrations are positively correlated. In contrast, the range of gastric phase BAF for nickel was greater (1.4–43.8 %), while no significant correlation was observed between bioaccessible and total nickel concentrations. However, nickel BAF was inversely correlated with total concentration. Solid-phase fractionation information showed that bioaccessible nickel was associated with calcium carbonate, aluminium oxide, iron oxide and clay-related components, while bioaccessible chromium was associated with clay-related components. This suggests that weathering significantly affects nickel bioaccessibility, but does not have the same effect on the bioaccessibility of chromium.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Medical geology research has recognised a number of potentially toxic elements (PTEs), such as arsenic, cobalt, chromium, copper, nickel, lead, vanadium, uranium and zinc, known to influence human disease by their respective deficiency or toxicity. As the impact of infectious diseases has decreased and the population ages, so cancer has become the most common cause of death in developed countries including Northern Ireland. This research explores the relationship between environmental exposure to potentially toxic elements in soil and cancer disease data across Northern Ireland. The incidence of twelve different cancer types (lung, stomach, leukaemia, oesophagus, colorectal, bladder, kidney, breast, mesothelioma, melanoma and non melanoma(NM) both basal and squamous, were examined in the form of twenty-five coded datasets comprising aggregates over the 12 year period from 1993 to 2006. A local modelling technique,geographically weighted regression (GWR) is usedto explore the relationship between environmental exposure and cancer disease data. The results show comparisons of the geographical incidence of certain cancers (stomach and NM squamous skin cancer) in relation to concentrations of certain PTEs (arsenic levels in soils and radon were identified). Findings from the research have implications for regional human health risk assessments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chiral thioureas and functionalised chiral thiouronium salts were synthesised starting from the relatively cheap and easily available chiral amines: (S)-methylbenzylamine and rosin-derived (+)-dehydroabietylamine. The introduction of a delocalised positive charge to the thiourea functionality, by an alkylation reaction at the sulfur atom, enables dynamic rotameric processes: hindered rotations about the delocalised CN and CS bonds. Hence, four different rotamers/isomers may be recognised: syn-syn, syn-anti, anti-syn and anti-anti. Extensive H-1 and C-13 NMR studies have shown that in hydrogen-bond acceptor solvents, such as perdeuteriated dimethyl sulfoxide, the syn-syn conformation is preferable. On the other hand, when using non-polar solvents, such as CDCl3, the mixture of syn-syn and syn-anti isomers is detectable, with an excess of the latter. Apart from this, in the case of S-butyl-N,N'-bis(dehydroabietyl)thiouronium ethanoate in CDCl3, the H-1 NMR spectrum revealed that strong bifurcated hydrogen bonding between the anion and the cation causes global rigidity without signs of hindered rotamerism observable on the NMR time scale. This suggested that these new salts might be used as NMR discriminating agents for chiral oxoanions, and are indeed more effective than their archetypal guanidinium analogues or the neutral thioureas. The best results in recognition of a model substrate, mandelate, were obtained with S-butyl-N,N'-bis(dehydroabietyl) thiouronium bistriflamide. It was confirmed that the chiral recognition occurred not only for carboxylates but also for sulfonates and phosphonates. Further H-1 NMR studies confirmed a 1 : 1 recognition mode between the chiral agent (host) and the substrate (guest); binding constants were determined by H-1 NMR titrations in solutions of DMSO-d(6) in CDCl3. It was also found that the anion of the thiouronium salt had a significant influence on the recognition process: anions with poor hydrogen-bond acceptor abilities led to the best discrimination. The presence of host-guest hydrogen bonding was confirmed in the X-ray crystal structure of S-butyl-N,N'-bis(dehydroabietyl)thiouronium bromide and by computational studies (density functional theory).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although soil algae are among the main primary producers in most terrestrial ecosystems of continental Antarctica, there are very few quantitative studies on their relative proportion in the main algal groups and on how their distribution is affected by biotic and abiotic factors. Such knowledge is essential for understanding the functioning of Antarctic terrestrial ecosystems. We therefore analyzed biological soil crusts from northern Victoria Land to determine their pH, electrical conductivity (EC) water content (W), total and organic C (TC and TOC) and total N (TN) contents, and the presence and abundance of photosynthetic pigments. In particular, the latter were tested as proxies for biomass and coarse-resolution community structure. Soil samples were collected from five sites with known soil algal communities and the distribution of pigments was shown to reflect differences in the relative proportions of Chlorophyta, Cyanophyta and Bacillariophyta in these sites. Multivariate and univariate models strongly indicated that almost all soil variables (EC, W, TOC and TN) were important environmental correlates of pigment distribution. However, a significant amount of variation is independent of these soil variables and may be ascribed to local variability such as changes in microclimate at varying spatial and temporal scales. There are at least five possible sources of local variation: pigment preservation, temporal variations in water availability, temporal and spatial interactions among environmental and biological components, the local-scale patchiness of organism distribution, and biotic interactions. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Soil fauna in the extreme conditions of Antarctica consists of a few microinvertebrate species patchily distributed at different spatial scales. Populations of the prostigmatic mite Stereotydeus belli and the collembolan Gressittacantha terranova from northern Victoria Land (Antarctica) were used as models to study the effect of soil properties on microarthropod distributions. In agreement with the general assumption that the development and distribution of life in these ecosystems is mainly controlled by abiotic factors, we found that the probability of occurrence of S. belli depends on soil moisture and texture and on the sampling period (which affects the general availability of water); surprisingly, none of the analysed variables were significantly related to the G. terranova distribution. Based on our results and literature data, we propose a theoretical model that introduces biotic interactions among the major factors driving the local distribution of collembolans in Antarctic terrestrial ecosystems. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Geologic and environmental factors acting over varying spatial scales can control
trace element distribution and mobility in soils. In turn, the mobility of an element in soil will affect its oral bioaccessibility. Geostatistics, kriging and principal component analysis (PCA) were used to explore factors and spatial ranges of influence over a suite of 8 element oxides, soil organic carbon (SOC), pH, and the trace elements nickel (Ni), vanadium (V) and zinc (Zn). Bioaccessibility testing was carried out previously using the Unified BARGE Method on a sub-set of 91 soil samples from the Northern Ireland Tellus1 soil archive. Initial spatial mapping of total Ni, V and Zn concentrations shows their distributions are correlated spatially with local geologic formations, and prior correlation analyses showed that statistically significant controls were exerted over trace element bioaccessibility by the 8 oxides, SOC and pH. PCA applied to the geochemistry parameters of the bioaccessibility sample set yielded three principal components accounting for 77% of cumulative variance in the data
set. Geostatistical analysis of oxide, trace element, SOC and pH distributions using 6862 sample locations also identified distinct spatial ranges of influence for these variables, concluded to arise from geologic forming processes, weathering processes, and localised soil chemistry factors. Kriging was used to conduct a spatial PCA of Ni, V and Zn distributions which identified two factors comprising the majority of distribution variance. This was spatially accounted for firstly by basalt rock types, with the second component associated with sandstone and limestone in the region. The results suggest trace element bioaccessibility and distribution is controlled by chemical and geologic processes which occur over variable spatial ranges of influence.