76 resultados para Sodium sulfate
Resumo:
The knowledge of the chemical stability as a function of the temperature of ionic liquids (ILs) in the presence of other molecules such as water is crucial prior to developing any no GO industrial application and process involving these novel materials. Fluid phase equilibria and density over a large range of temperature and composition can give basic information on IL purity and chemical stability. The IL scientific community requires accurate measurements accessed from reference data. In this work, the stability of different alkyl sulfate-based ILs in the presence of water and various alcohols (methanol, ethanol, 1-butanol, and 1-octanol) was investigated to understand their stability as a function of temperature up to 423.15 K over the hydrolysis and transesterification reactions, respectively. From this investigation, it was clear that methyl sulfate- and ethyl sulfate-based ILs are not stable in the presence of water, since hydrolysis of the methyl sulfate or ethyl sulfate anions to methanol or ethanol and hydrogenate anion is undoubtedly observed. Such observations could help to explain the differences observed for the physical properties published in the literature by various groups. Furthermore, it appears that a thermodynamic equilibrium process drives these hydrolysis reactions. In other words, these hydrolysis reactions are in fact reversible, providing the possibility to re-form the desired alkyl sulfate anions by a simple transesterification reaction between hydrogen sulfate-based ILs and the corresponding alcohol (methanol or ethanol). Additionally, butyl sulfate- and octyl sulfate-based ILs appear to follow this pattern but under more drastic conditions. In these systems, hydrolysis is observed in both cases after several months for temperatures up to 423 K in the presence of water. Therein, the partial miscibility of hydrogen sulfate-based ILs with long chain alcohols (1-butanol and 1-octanol) can help to explain the enhanced hydrolytic stability of the butyl sulfate- and octyl sulfate-based ILs compared with the methyl or ethyl sulfate systems. Additionally, rapid transesterification reactions are observed during liquid-liquid equilibrium studies as a function of temperature for binary systems of (hydrogen sulfate-based ionic liquids + 1-butanol) and of (hydrogen sulfate-based ionic liquids + 1-octanol). Finally, this atom-efficient catalyst-free transesterification reaction between hydrogen sulfate-based ILs and alcohol was then tested to provide a novel way to synthesize new ILs with various anion structures containing the alkyl sulfate group.
Resumo:
The commercial production of vanillin from sodium lignosulfonate under highly alkaline conditions, catalyzed by Cu2+ at elevated temperature and pressures up to 10 bar, has been simulated in a 3-L stirred reactor. Initially, the process was operated in the presence of nitrogen in dead-end mode, and it was shown that vanillin and vanillic acid were formed by hydrolysis at temperatures of 120, 140, and 160 °C. At the two higher temperatures, the amount of vanillin produced was the same. Subsequently, experiments were conducted at the same elevated pressures and temperatures with addition of air or oxygen-enriched air once the temperature in the reactor had reached temperatures similar to those used when only hydrolysis occurred. In this case, the concentration of vanillin at 140 and 160 °C was equal to that due to hydrolysis, and the subsequent 2-fold increase was due to oxidation. In addition, both vanillic acid and acetovanillone (which has rarely been reported) were produced, as was hydrogen. Thus, for the first time, it has been shown that the production of vanillin (and other compounds) from sodium lignosulfonate at elevated temperatures involves hydrolysis and oxidation, with hydrolysis starting at just above 100 °C, that is, much lower than has previously been reported. Approximately 50% is produced by each mechanism. In addition, the orders of the reactions of the different steps were estimated, and the reaction mechanisms are discussed.
Resumo:
The Maillard or browning reaction between sugar and protein contributes to the increased chemical modification and cross-linking of long-lived tissue proteins in diabetes. To evaluate the role of glycation and oxidation in these reactions, we have studied the effects of oxidative and antioxidative conditions and various types of inhibitors on the reaction of glucose with rat tail tendon collagen in phosphate buffer at physiological pH and temperature. The chemical modifications of collagen that were measured included fructoselysine, the glycoxidation products N epsilon-(carboxymethyl)lysine and pentosidine and fluorescence. Collagen cross-linking was evaluated by analysis of cyanogen bromide peptides using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by changes in collagen solubilization on treatment with pepsin or sodium dodecylsulfate. Although glycation was unaffected, formation of glycoxidation products and cross-linking of collagen were inhibited by antioxidative conditions. The kinetics of formation of glycoxidation products proceeded with a short lag phase and were independent of the amount of Amadori adduct on the protein, suggesting that autoxidative degradation of glucose was a major contributor to glycoxidation and cross-linking reactions. Chelators, sulfhydryl compounds, antioxidants, and aminoguanidine also inhibited formation of glycoxidation products, generation of fluorescence, and cross-linking of collagen without significant effect on the extent of glycation of the protein. We conclude that autoxidation of glucose or Amadori compounds on protein plays a major role in the formation of glycoxidation products and cross-liking of collagen by glucose in vitro and that chelators, sulfhydryl compounds, antioxidants, and aminoguanidine act as uncouplers of glycation from subsequent glycoxidation and cross-linking reactions.
Resumo:
Chloride is the most severe form of deterioration experienced by concrete and one of the principal sources of chlorides is sea water. However, the presence of sulfates in seawater will influence the movement of chloride ions and vice versa. This interaction is not well understood and current codes of practice provide no guidelines for such dual exposure.
An investigation to monitor combined effect of the ingress of chlorides and sulfates during a realistic 12 month wetting and drying exposure regime to simulate conditions in which multiple mode transport mechanisms are active was conducted on a variety of binders (PC, PFA and GGBS). Penetration was evaluated using water and acid soluble chloride profiles and sulfate profiles.
It was found that the nature of the exposure provided multiple modes of transport within the concrete, thus creating a complex pattern of distribution of ions. The presence of sulfates decreased the penetration of chlorides in the PC system at all ages relative to a chloride only control. The matrices containing PFA and GGBS also showed an initial decrease in chloride penetration. However, after six months the presence of sulfates then increased chloride penetration.
Resumo:
Diazacoronand 2 undergoes drastic conformational switching upon binding sodium ions as demonstrated by solution- and solid-state studies, which permit the design of efficient fluorescent PET (photoinduced electron transfer) switches 3a,b.
Resumo:
Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5–6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph.
Resumo:
Within the complex of deep, hypersaline anoxic lakes (DHALs) of the Mediterranean Ridge, we identified a new, unexplored DHAL and named it ‘Lake Kryos’ after a nearby depression. This lake is filled with magnesium chloride (MgCl2)-rich, athalassohaline brine (salinity > 470 practical salinity units), presumably formed by the dissolution of Messinian bischofite. Compared with the DHAL Discovery, it contains elevated concentrations of kosmotropic sodium and sulfate ions, which are capable of reducing the net chaotropicily of MgCl2-rich solutions. The brine of Lake Kryos may therefore be biologically permissive at MgCl2 concentrations previously considered incompatible with life. We characterized the microbiology of the seawater–Kryos brine interface and managed to recover mRNA from the 2.27–3.03 MMgCl2 layer (equivalent to 0.747–0.631 water activity), thereby expanding the established chaotropicity window-for-life. The primary bacterial taxa present there were Kebrit Deep Bacteria 1 candidate division and DHAL-specific group of organisms, distantly related toDesulfohalobium. Two euryarchaeal candidate divisions, Mediterranean Sea Brine Lakes group 1 and halophilic cluster 1, accounted for > 85% of the rRNA-containing archaeal clones derived from the 2.27–3.03 M MgCl2 layer, but were minority community-members in the overlying interface-layers. These findings shed light on the plausibility of life in highly chaotropic environments, geochemical windows for microbial extremophiles, and have implications for habitability elsewhere in the Solar System.
Resumo:
Monocyclic allylic cis-1,2-diols reacted with sulfuryl chloride at 0 °C in a regio- and stereo-selective manner to give 2-chloro-1-sulfochloridates, which were hydrolysed to yield the corresponding trans-1,2-chlorohydrins. At −78 °C, with very slow addition of sulfuryl chloride, cyclic sulfates were formed in good yields, proved to be very reactive with nucleophiles and rapidly decomposed on attempted storage. Reaction of a cyclic sulfate with sodium azide yielded a trans-azidohydrin without evidence of allylic rearrangement occurring. An enantiopure bicyclic cis-1,2-diol reacted with sulfuryl chloride to give, exclusively, a trans-1,2-dichloride enantiomer with retention of configuration at the benzylic centre and inversion at the non-benzylic centre; a mechanism is presented to rationalise the observation.
Resumo:
We report on a pilot study of a novel observing technique, defocussed transmission spectroscopy, and its application to the study of exoplanet atmospheres using ground-based platforms. Similar to defocussed photometry, defocussed transmission spectroscopy has an added advantage over normal spectroscopy in that it reduces systematic errors due to flat-fielding, PSF variations, slit-jaw imperfections and other effects associated with ground-based observations. For one of the planetary systems studied, WASP-12b, we report a tentative detection of additional Na absorption of 0.12+/-0.03[+0.03]% during transit using a 2A wavelength mask. After consideration of a systematic that occurs mid-transit, it is likely that the true depth is actually closer to 0.15%. This is a similar level of absorption reported in the atmosphere of HD209458b (0.135+/-0.017%, Snellen et al. 2008). Finally, we outline methods that will improve the technique during future observations, based on our findings from this pilot study.
Resumo:
Nosocomial transmission of methicillin-resistant Staphylococcus aureus (MRSA) to patients with cystic fibrosis (CF) frequently results in chronic respiratory tract carriage. This is an increasing problem, adds to the burden of glycopeptide antibiotic use in hospitals, and represents a relative contraindication to lung transplantation. The aim of this study was to determine whether it is possible to eradicate MRSA with prolonged oral combination antibiotics, and whether this treatment is associated with improved clinical status. Adult CF patients (six male, one female) with chronic MRSA infection were treated for six months with rifampicin and sodium fusidate. Outcome data were examined for six months before treatment, on treatment and after treatment. The patients had a mean age of 29.3 (standard deviation=6.3) years and FEV(1) of 36.1% (standard deviation=12.7) predicted. The mean duration of MRSA isolation was 31 months. MRSA isolates identified in these patients was of the same lineage as the known endemic strain at the hospital when assessed by pulsed-field gel electrophoresis. Five of the seven had no evidence of MRSA during and for at least six months after rifampicin and sodium fusidate. The proportion of sputum samples positive for MRSA was lower during the six months of treatment (0.13) and after treatment (0.19) compared with before treatment (0.85) (P<0.0001). There was a reduction in the number of days of intravenous antibiotics per six months with 20.3+/-17.6 on treatment compared with 50.7 before treatment and 33.0 after treatment (P=0.02). There was no change in lung function. Gastrointestinal side effects occurred in three, but led to therapy cessation in only one patient. Despite the use of antibiotics with anti-staphylococcal activity for treatment of respiratory exacerbation, MRSA infection persists. MRSA can be eradicated from the sputum of patients with CF and chronic MRSA carriage by using rifampicin and sodium fusidate for six months. This finding was associated with a significant reduction in the duration of intravenous antibiotic treatment during therapy.
Resumo:
The effect of sodium-modification on the catalyst and electrocatalytic properties of a platinum catalyst supported on a YSZ solid electrolyte was studied. Increasing the sodium coverage on the catalyst surface appears to block some of the three-phase boundary (tpb) sites and reduces the rate of the charge transfer reaction. The promotion of the platinum surface reaction (ethylene oxidation) seems to a first approximation to be a function of the rate of oxygen supply or removal to or from the surface irrespective of whether this is contaminated by sodium or not (samples with sodium contamination require a higher overpotential to achieve the same current density as a clean sample because of poisoning in the tpb). At high negative polarisations (oxygen removed from the surface) the sodium contaminated samples show a significant increase in rate, possibly due to the decomposition of e.g. sodium hydroxides and carbonates. © 2012 Elsevier B.V.
Resumo:
Na+ near membranes controls our nerve signals, besides several other crucial bioprocesses. We demonstrate that fluorescent PET (photoinduced electron transfer) sensor molecules target Na+ in nanospaces near micellar membranes with excellent discrimination against H+. They find that Na+ near anionic micelles is concentrated by factors of upto 160. Sensor molecules which are not held tight to the micelle surface find a Na+ amplification factor of 8 only. These findings are strengthened by the employment of control compounds whose PET processes are permanently ‘on’ or permanently ‘off’.