186 resultados para Sandwich beams
Resumo:
Reinforced concrete (RC) beams may be strengthened for shear using externally bonded fiber reinforced polymer (FRP) composites in the form of side bonding, U-jacketing or complete wrapping. The shear failure of almost all RC beams shear-strengthened with side bonded FRP and the majority of those strengthened with FRP U-jackets, is due to debonding of the FRP. The bond behavior between the externally-bonded FRP reinforcement (referred to as FRP strips for simplicity) and the concrete substrate therefore plays a crucial role in the failure process of these beams. Despite extensive research in the past decade, there is still a lack of understanding of how debonding of FRP strips in such a beam propagates and how the debonding process affects its shear behavior. This paper presents an analytical study on the progressive debonding of FRP strips in such strengthened beams. The complete debonding process is modeled and the contribution of the FRP strips to the shear capacity of the beam is quantified. The validity of the analytical solution is verified by comparing its predictions with numerical results from a finite element analysis. This analytical treatment represents a significant step forward in understanding how interaction between FRP strips, steel stirrups and concrete affects the shear resistance of RC beams shear-strengthened with FRP strips.
Resumo:
RC beams shear strengthened with externally bonded fiber-reinforced polymer (FRP) U strips or side strips usually fail owing to debonding of the bonded FRP shear reinforcement. Because such debonding usually occurs in a brittle manner at relatively small shear crack widths, some of the internal steel stirrups intersected by the critical shear crack may not have reached yielding at beam shear failure. Consequently, the yield stress of internal steel stirrups in such a strengthened RC beam cannot be fully utilized. This adverse shear interaction between the internal steel shear reinforcement and the external FRP shear reinforcement may significantly reduce the benefit of the shear strengthening FRP but has not been considered explicitly by any of the shear strength models in the existing design guidelines. This paper presents a new shear strength model considering this adverse shear interaction through the introduction of a shear interaction factor. A comprehensive evaluation of the proposed model, as well as three other shear strength models, is conducted using a large test database. It is shown that the proposed shear strength model performs the best among the models compared, and the performance of the other shear strength models can be significantly improved by including the proposed shear interaction factor. Finally, a design recommendation is presented.