79 resultados para STELLAR ENERGIES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light-curve data. We assume flares are described by a model in which there is a rapid rise with a half-Gaussian profile, followed by an exponential decay. Our signal model also contains a polynomial background model required to fit underlying light-curve variations in the data, which could otherwise partially mimic a flare. We characterize the false alarm probability and efficiency of this method under the assumption that any unmodelled noise in the data is Gaussian, and compare it with a simpler thresholding method based on that used in Walkowicz et al. We find our method has a significant increase in detection efficiency for low signal-to-noise ratio (S/N) flares. For a conservative false alarm probability our method can detect 95 per cent of flares with S/N less than 20, as compared to S/N of 25 for the simpler method. We also test how well the assumption of Gaussian noise holds by applying the method to a selection of 'quiet' Kepler stars. As an example we have applied our method to a selection of stars in Kepler Quarter 1 data. The method finds 687 flaring stars with a total of 1873 flares after vetos have been applied. For these flares we have made preliminary characterizations of their durations and and S/N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pseudopotential for positronium-atom interaction, based on electron-atom and positron-atom phase shifts, is constructed, and the phase shifts for Ps-Kr and Ps-Ar scattering are calculated. This approach allows us to extend the Ps-atom cross sections, obtained previously in the impulse approximation [I. I. Fabrikant and G. F. Gribakin, Phys. Rev. Lett. 112, 243201 (2014)], to energies below the Ps ionization threshold. Although experimental data are not available in this low-energy region, our results describe well the tendency of the measured cross sections to drop with decreasing velocity at v < 1 a.u. Our results show that the effect of the Ps-atom van der Waals interaction is weak compared to the polarization interaction in electron-atom and positron-atom scattering. As a result, the Ps scattering length for both Ar and Kr is positive, and the Ramsauer-Townsend minimum is not observed for Ps scattering from these targets. This makes Ps scattering quite different from electron scattering in the low-energy region, in contrast to the intermediate energy range from the Ps ionization threshold up to v ∼ 2 a.u., where the two are similar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze and interpret the oscillatory signal in the decay phase of the U-band light curve of a stellar megaflare observed on 2009 January 16 on the dM4.5e star YZ CMi. The oscillation is well approximated by an exponentially decaying harmonic function. The period of the oscillation is found to be 32 minutes, the decay time about 46 minutes, and the relative amplitude 15%. As this observational signature is typical of the longitudinal oscillations observed in solar flares at extreme ultraviolet and radio wavelengths, associated with standing slow magnetoacoustic waves, we suggest that this megaflare may be of a similar nature. In this scenario, macroscopic variations of the plasma parameters in the oscillations modulate the ejection of non-thermal electrons. The phase speed of the longitudinal (slow magnetoacoustic) waves in the flaring loop or arcade, the tube speed, of about 230 km s-1 would require a loop length of about 200 Mm. Other mechanisms, such as standing kink oscillations, are also considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot-JupiterWASP-10bwas reported by Maciejewski et al. to showtransit timing variations (TTVs) with an amplitude of ~3.5 min. These authors proposed that the observed TTVs were caused by a 0.1MJup perturbing companion with an orbital period of ~5.23 d, and hence, close to the outer 5:3 mean-motion resonance with WASP-10b. To test this scenario, we present eight new transit light curves of WASP-10b obtained with the Faulkes Telescope North and the Liverpool Telescope. The new light curves, together with 22 previously published ones, were modelled with a Markov Chain Monte Carlo transit fitting code. Transit depth differences reported forWASP-10b are thought to be due to starspot-induced brightness modulation of the host star. Assuming the star is brighter at the activity minimum, we favour a small planetary radius. We find Rp = 1.039+0.043 -0.049RJup in agreement with Johnson et al. and Maciejewski et al. Recent studies find no evidence for a significant eccentricity in this system. We present consistent system parameters for a circular orbit and refine the orbital ephemeris ofWASP-10b. Our homogeneously derived transit times do not support the previous claimed TTV signal, which was strongly dependent on two previously published transits that have been incorrectly normalized. Nevertheless, a linear ephemeris is not a statistically good fit to the transit times of WASP-10b. We show that the observed transit time variations are due to spot occultation features or systematics. We discuss and exemplify the effects of occultation spot features in the measured transit times and show that despite spot occultation during egress and ingress being difficult to distinguish in the transit light curves, they have a significant effect in the measured transit times. We conclude that if we account for spot features, the transit times of WASP-10b are consistent with a linear ephemeris with the exception of one transit (epoch 143) which is a partial transit. Therefore, there is currently no evidence for the existence of a companion to WASP-10b. Our results support the lack of TTVs of hot-Jupiters reported for the Kepler sample. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present data for LSQ14bdq, a hydrogen-poor super-luminous supernova (SLSN) discovered by the La Silla QUEST survey and classified by the Public ESO Spectroscopic Survey of Transient Objects. The spectrum and light curve are very similar to slow-declining SLSNe such as PTF12dam. However, detections within ∼1 day after explosion show a bright and relatively fast initial peak, lasting for ∼15 days, prior to the usual slow rise to maximum light. The broader, main peak can be fit with either central engine or circumstellar interaction models. We discuss the implications of the precursor peak in the context of these models. It is too bright and narrow to be explained as a normal <sup>56</sup>Ni-powered SN, and we suggest that interaction models may struggle to fit the two peaks simultaneously. We propose that the initial peak may arise from the post-shock cooling of extended stellar material, and reheating by a central engine drives the second peak. In this picture, we show that an explosion energy of ∼2 × 10<sup>52</sup> erg and a progenitor radius of a few hundred solar radii would be required to power the early emission. The competing engine models involve rapidly spinning magnetars (neutron stars) or fallback onto a central black hole. The prompt energy required may favor the black hole scenario. The bright initial peak may be difficult to reconcile with a compact Wolf-Rayet star as a progenitor since the inferred energies and ejected masses become unphysical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present nebular-phase optical and near-infrared spectroscopy of the Type IIP supernova SN 2012aw combined with non-local thermodynamic equilibrium radiative transfer calculations applied to ejecta from stellar evolution/explosion models. Our spectral synthesis models generally show good agreement with the ejecta from a MZAMS = 15 Mprogenitor star. The emission lines of oxygen, sodium, and magnesium are all consistent with the nucleosynthesis in a progenitor in the 14-18 M range.We also demonstrate how the evolution of the oxygen cooling lines of [O I] λ5577, [O I] λ6300, and [O I] λ6364 can be used to constrain the mass of oxygen in the non-molecularly cooled ashes to < 1 M, independent of the mixing in the ejecta. This constraint implies that any progenitor model of initial mass greater than 20 M would be difficult to reconcile with the observed line strengths. A stellar progenitor of around MZAMS = 15 M can consistently explain the directly measured luminosity of the progenitor star, the observed nebular spectra, and the inferred pre-supernova mass-loss rate.We conclude that there is still no convincing example of a Type IIP supernova showing the nucleosynthesis products expected from an MZAMS > 20 M progenitor. © 2014 The Author. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies. Previous candidate flares have had declining light curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two `relativistic' candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet. Here we report a luminous ultraviolet-optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decay of the light curve follow the predicted mass accretion rate and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about two million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Binary stellar evolution calculations predict thatChandrasekhar-mass carbon/oxygen white dwarfs (WDs) show a radiallyvarying profile for the composition with a carbon depleted core. Manyrecent multi-dimensional simulations of Type Ia supernovae (SNe Ia),however, assume the progenitor WD has a homogeneous chemicalcomposition.
Aims: In this work, we explore the impact ofdifferent initial carbon profiles of the progenitor WD on the explosionphase and on synthetic observables in the Chandrasekhar-mass delayeddetonation model. Spectra and light curves are compared to observationsto judge the validity of the model.
Methods: The explosion phaseis simulated using the finite volume supernova code Leafs, which isextended to treat different compositions of the progenitor WD. Thesynthetic observables are computed with the Monte Carlo radiativetransfer code Artis. Results: Differences in binding energies ofcarbon and oxygen lead to a lower nuclear energy release for carbondepleted material; thus, the burning fronts that develop are weaker andthe total nuclear energy release is smaller. For otherwise identicalconditions, carbon depleted models produce less 56Ni.Comparing different models with similar 56Ni yields showslower kinetic energies in the ejecta for carbon depleted models, butonly small differences in velocity distributions and line velocities inspectra. The light curve width-luminosity relation (WLR) obtained formodels with differing carbon depletion is roughly perpendicular to theobserved WLR, hence the carbon mass fraction is probably only asecondary parameter in the family of SNe Ia.
Tables 3 and 4 are available in electronic form at http://www.aanda.org

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The YSOVAR (Young Stellar Object VARiability) Spitzer Space Telescope observing program obtained the first extensive mid-infrared (3.6 and 4.5 μm) time series photometry of the Orion Nebula Cluster plus smaller footprints in 11 other star-forming cores (AFGL 490, NGC 1333, Mon R2, GGD 12-15, NGC 2264, L1688, Serpens Main, Serpens South, IRAS 20050+2720, IC 1396A, and Ceph C). There are ~29,000 unique objects with light curves in either or both IRAC channels in the YSOVAR data set. We present the data collection and reduction for the Spitzer and ancillary data, and define the "standard sample" on which we calculate statistics, consisting of fast cadence data, with epochs roughly twice per day for ~40 days. We also define a "standard sample of members" consisting of all the IR-selected members and X-ray-selected members. We characterize the standard sample in terms of other properties, such as spectral energy distribution shape. We use three mechanisms to identify variables in the fast cadence data—the Stetson index, a χ2 fit to a flat light curve, and significant periodicity. We also identified variables on the longest timescales possible of six to seven years by comparing measurements taken early in the Spitzer mission with the mean from our YSOVAR campaign. The fraction of members in each cluster that are variable on these longest timescales is a function of the ratio of Class I/total members in each cluster, such that clusters with a higher fraction of Class I objects also have a higher fraction of long-term variables. For objects with a YSOVAR-determined period and a [3.6]-[8] color, we find that a star with a longer period is more likely than those with shorter periods to have an IR excess. We do not find any evidence for variability that causes [3.6]-[4.5] excesses to appear or vanish within our data set; out of members and field objects combined, at most 0.02% may have transient IR excesses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a time-variability study of young stellar objects (YSOs) in the cluster IRAS 20050+2720, performed at 3.6 and 4.5 μm with the Spitzer Space Telescope; this study is part of the Young Stellar Object VARiability (YSOVAR) project. We have collected light curves for 181 cluster members over 60 days. We find a high variability fraction among embedded cluster members of ca. 70%, whereas young stars without a detectable disk display variability less often (in ca. 50% of the cases) and with lower amplitudes. We detect periodic variability for 33 sources with periods primarily in the range of 2–6 days. Practically all embedded periodic sources display additional variability on top of their periodicity. Furthermore, we analyze the slopes of the tracks that our sources span in the color–magnitude diagram (CMD). We find that sources with long variability time scales tend to display CMD slopes that are at least partially influenced by accretion processes, while sources with short variability timescales tend to display extinction-dominated slopes. We find a tentative trend of X-ray detected cluster members to vary on longer timescales than the X-ray undetected members.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system’s dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the infrom the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn, we determine both the sky-projected (λ ≈ −0.4 ± 0.2◦) and true 3D obliquity (ψ ≈ 7+12 −4 ◦ ). We also find good agreement with the MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful with the next generation of high-precision radial velocity spectrographs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

bservations of the Rossiter–McLaughlin (RM) effect provide information on star–planet alignments, which can inform planetary migration and evolution theories. Here, we go beyond the classical RM modeling and explore the impact of a convective blueshift that varies across the stellar disk and non-Gaussian stellar photospheric profiles. We simulated an aligned hot Jupiter with a four-day orbit about a Sun-like star and injected center-to-limb velocity (and profile shape) variations based on radiative 3D magnetohydrodynamic simulations of solar surface convection. The residuals between our modeling and classical RM modeling were dependent on the intrinsic profile width and v sin i; the amplitude of the residuals increased with increasing v sin i and with decreasing intrinsic profile width. For slowly rotating stars the center-to-limb convective variation dominated the residuals (with amplitudes of 10 s of cm s−1 to ~1 m s−1); however, for faster rotating stars the dominant residual signature was due a non-Gaussian intrinsic profile (with amplitudes from 0.5 to 9 m s−1). When the impact factor was 0, neglecting to account for the convective center-to-limb variation led to an uncertainty in the obliquity of ~10°–20°, even though the true v sin i was known. Additionally, neglecting to properly model an asymmetric intrinsic profile had a greater impact for more rapidly rotating stars (e.g., v sin i = 6 km s−1) and caused systematic errors on the order of ~20° in the measured obliquities. Hence, neglecting the impact of stellar surface convection may bias star–planet alignment measurements and consequently theories on planetary migration and evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are, however, found in multiple systems. 

Aims: By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary subpopulations with one another and with that of presumed-single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the spin rates of massive stars. 

Methods: We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (νesini) for components of 114 spectroscopic binaries in 30 Doradus. The νesini values are derived from the full width at half maximum (FWHM) of a set of spectral lines, using a FWHM vs. νesini calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample. 

Results: The overall νesini distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at νesini<200 kms-1) and a shoulder at intermediate velocities (200 <νesini<300 kms-1). The distributions of binaries and single stars, however, differ in two ways. First, the main peak at νesini ~ 100kms-1 is broader and slightly shifted towards higher spin rates in the binary distribution than that of the presumed-single stars. This shift is mostly due to short-period binaries (Porb~<10 d). Second, the νesini distribution of primaries lacks a significant population of stars spinning faster than 300 kms-1, while such a population is clearly present in the single-star sample. The νesini distribution of binaries with amplitudes of radial velocity variation in the range of 20 to 200 kms-1 (mostly binaries with Porb ~ 10-1000 d and/or with q<0.5) is similar to that of single O stars below νesini~<170kms-1

Conclusions: Our results are compatible with the assumption that binary components formed with the same spin distribution as single stars, and that this distribution contains few or no fast-spinning stars. The higher average spin rate of stars in short-period binaries may either be explained by spin-up through tides in such tight binary systems, or by spin-down of a fraction of the presumed-single stars and long-period binaries through magnetic braking (or by a combination of both mechanisms). Most primaries and secondaries of SB2 systems with Porb~<10 d appear to have similar rotational velocities. This is in agreement with tidal locking in close binaries where the components have similar radii. The lack of very rapidly spinning stars among binary systems supports the idea that most stars with νesini~> 300kms-1 in the single-star sample are actually spun-up post-binary interaction products. Finally, the overall similarities (low-velocity peak and intermediate-velocity shoulder) of the spin distribution of binary and single stars argue for a massive star formation process in which the initial spin is set independently of whether stars are formed as single stars or as components of a binary system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new approach to understand the landscape of supernova explosion energies, ejected nickel masses, and neutron star birth masses. In contrast to other recent parametric approaches, our model predicts the properties of neutrino-driven explosions based on the pre-collapse stellar structure without the need for hydrodynamic simulations. The model is based on physically motivated scaling laws and simple differential equations describing the shock propagation, the contraction of the neutron star, the neutrino emission, the heating conditions, and the explosion energetics. Using model parameters compatible with multi-D simulations and a fine grid of thousands of supernova progenitors, we obtain a variegated landscape of neutron star and black hole formation similar to other parametrized approaches and find good agreement with semi-empirical measures for the ‘explodability’ of massive stars. Our predicted explosion properties largely conform to observed correlations between the nickel mass and explosion energy. Accounting for the coexistence of outflows and downflows during the explosion phase, we naturally obtain a positive correlation between explosion energy and ejecta mass. These correlations are relatively robust against parameter variations, but our results suggest that there is considerable leeway in parametric models to widen or narrow the mass ranges for black hole and neutron star formation and to scale explosion energies up or down. Our model is currently limited to an all-or-nothing treatment of fallback and there remain some minor discrepancies between model predictions and observational constraints.