67 resultados para Response function
Resumo:
Objectives: Fibroblasts play a significant role as regulators of the host response in periodontal disease, responding to bacterial stimulation by producing an array of inflammatory cytokines and chemokines. LL-37, a host defence peptide, inhibits LPS-induced cytokine signalling in macrophages, suggesting an immunomodulatory role. The objective was to investigate the interaction between LL-37 and gingival fibroblasts – both its direct regulation of fibroblast activity and its effect on fibroblast response to LPS activation. Methods: Human gingival fibroblasts (HGFs) were incubated for 24 hours in the presence of either P. gingivalis LPS (10µg/ml) or E. coli LPS (10ng/ml) along with LL-37 (0-50 µg/ml). IL-6 and IL-8 production by HGFs in the conditioned medium was determined by ELISA. Western blot was performed to determine the effect of LL-37 on LPS -induced IκBα degradation in HGFs following LPS stimulation over 2 hours. DNA microarray analysis was performed on cell populations incubated for 6 hr in the presence or absence of the peptide. Confirmation of LL-37 effects on specific gene expression was obtained by QPCR. Results: At low concentrations (≤ 5 µg/ml) LL-37 significantly inhibited LPS-induced cytokine production by HGFs. At higher concentrations LL-37 induced IL-8 production independent of LPS. Addition of LL-37 blocked LPS-induced IκBα degradation in HGFs. Microarray analysis revealed that LL-37 (50µg/ml) upregulated a significant number of cytokines and chemokines by > 5 fold. Upregulation of five of these, CXCL1, CXCL2, CXCL3, IL-24 and IL-8 was confirmed by Q-PCR. Conclusion: The host defence peptide LL-37, the only known human cathelicidin, appears to have pleiotrophic effects in innate immunity. At least some of these are mediated through cytokine and chemokine signalling networks. The ability of LL-37 to reduce bacterial LPS-induced cytokine production in gingival fibroblasts, at low concentrations, suggests a potential therapeutic role in the management of periodontal disease.
Resumo:
Host defence peptides, including the cathelicidin LL-37, play an important role in mucosal immunity, functioning as both antimicrobial agents and modulators of the inflammatory response. In the current climate of antibiotic resistance, the idea of using naturally occurring antimicrobial peptides, or their synthetic mimetics, to combat oral infection is particularly appealing. Objectives: The aim of this study was to investigate the effects of parent LL-37, and two peptide mimetics (KR-12 and KE-18), on cytokine expression and response to bacterial challenge by gingival fibroblasts. Methods: KR-12 and KE-18 are peptide mimetics of the biologically active, mid-region sequence of LL-37. The effects of commercially available LL-37, KR-12 and KE-18 on gingival fibroblast response to E coli and P gingivalis LPS challenge, analysed by IL-6 and IL-8 expression, were determined in cell culture by ELISA. The direct effects of each peptide on IL-6, IL-8, CXCL-1 and HGF expression were also determined by ELISA. The MTT assay was used to evaluate peptide effects on fibroblast viability. Results: LL-37 and KE-18, but not KR-12, inhibited LPS induction of inflammatory cytokine expression and directly stimulated CXCL-1 production by fibroblasts. All 3 peptides stimulated production of IL-8 and HGF. Neither LL-37 nor KE-12 affected cell viability, while KE-18, at higher concentrations, induced cell death. Conclusions: Shorter, peptide mimetics of LL-37, in particular KE-18, retain the immunomodulatory effects of the parent molecule and possess excellent potential as therapeutic agents in the treatment of oral infections including periodontal disease.
Resumo:
Human induced pluripotent stem (iPS) cell-derived endothelial cells (ECs) hold clear potential for therapeutic angiogenesis as a novel strategy for ischaemic disease. Recently, we have developed a novel method for direct reprogramming of partial iPS (PiPS) cells, which unlike iPS cells, are generated before pluripotency so do not form tumours, and may be differentiated into ECs with characteristic morphology and pro-angiogenic actions. Our previous work showed that PiPS-derived ECs are capable of forming vascular-like tubes both in vitro and in vivo and promoting re-endothelialisation of ischemic tissue, with greater effectiveness versus mature ECs.
Interestingly, our preliminary data demonstrate that Nox NADPH oxidases, which are reported to influence stem cell function, are progressively induced during PiPs/PiPS-EC differentiation and in response to hypoxia, with Nox4 demonstrating highest expression. As this isoform is an established regulator of angiogenesis, we hypothesize that Nox4 plays a key role in modulating PiPS-EC generation and angiogenic function.
The aim of this project is therefore to investigate: (1) the specific role of Nox4 in direct reprogramming of PiPS cells and differentiation to PiPS-ECs; (2) whether genetic manipulation of Nox4 influences in vitro function of PiPs-ECs and their ability to promote in vivo angiogenesis. This will be achieved by employing established in vitro functional assays and an experimental model of hindlimb ischaemia with assessment of relevant end-points. Identification of a key role for Nox4 in regulating PiPS-EC generation/function may inform selective targeting of this isoform to enhance the efficiency of PiPS-EC differentiation and their capacity to treat ischemic disease.
Resumo:
Background
Ventilator-acquired pneumonia (VAP) remains a significant problem within intensive care units (ICUs). There is a growing recognition of the impact of critical-illness-induced immunoparesis on the pathogenesis of VAP, but the mechanisms remain incompletely understood. We hypothesised that, because of limitations in their routine detection, Mycoplasmataceae are more prevalent among patients with VAP than previously recognised, and that these organisms potentially impair immune cell function.
Methods and setting
159 patients were recruited from 12 UK ICUs. All patients had suspected VAP and underwent bronchoscopy and bronchoalveolar lavage (BAL). VAP was defined as growth of organisms at >104 colony forming units per ml of BAL fluid on conventional culture. Samples were tested for Mycoplasmataceae (Mycoplasma and Ureaplasma spp.) by PCR, and positive samples underwent sequencing for speciation. 36 healthy donors underwent BAL for comparison. Additionally, healthy donor monocytes and macrophages were exposed to Mycoplasma salivarium and their ability to respond to lipopolysaccharide and undertake phagocytosis was assessed.
Results
Mycoplasmataceaewerefoundin49%(95%CI 33% to 65%) of patients with VAP, compared with 14% (95% CI 9% to 25%) of patients without VAP. Patients with sterile BAL fluid had a similar prevalence to healthy donor BAL fluid (10% (95% CI 4% to 20%) vs 8% (95% CI 2% to 22%)). The most common organism identified was M. salivarium. Blood monocytes from healthy volunteers incubated with M. salivarium displayed an impaired TNF-α response to lipopolysaccharide ( p=0.0003), as did monocyte-derived macrophages (MDMs) (p=0.024). MDM exposed to M. salivarium demonstrated impaired phagocytosis ( p=0.005).
Discussion and conclusions
This study demonstrates a high prevalence of Mycoplasmataceae among patients with VAP, with a markedly lower prevalence among patients with suspected VAP in whom subsequent cultures refuted the diagnosis. The most common organism found, M. salivarium, is able to alter the functions of key immune cells. Mycoplasmataceae may contribute to VAP pathogenesis.
Resumo:
Demand response (DR) algorithms manipulate the energy consumption schedules of controllable loads so as to satisfy grid objectives. Implementation of DR algorithms using a centralized agent can be problematic for scalability reasons, and there are issues related to the privacy of data and robustness to communication failures. Thus, it is desirable to use a scalable decentralized algorithm for the implementation of DR. In this paper, a hierarchical DR scheme is proposed for peak minimization based on Dantzig-Wolfe decomposition (DWD). In addition, a time weighted maximization option is included in the cost function, which improves the quality of service for devices seeking to receive their desired energy sooner rather than later. This paper also demonstrates how the DWD algorithm can be implemented more efficiently through the calculation of the upper and lower cost bounds after each DWD iteration.
Resumo:
The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles’ impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5–58 MeV carbon ions and for protons in the energy range2–17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energiesE>~ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.
Resumo:
Ground-source heat pump (GSHP) systems represent one of the most promising techniques for heating and cooling in buildings. These systems use the ground as a heat source/sink, allowing a better efficiency thanks to the low variations of the ground temperature along the seasons. The ground-source heat exchanger (GSHE) then becomes a key component for optimizing the overall performance of the system. Moreover, the short-term response related to the dynamic behaviour of the GSHE is a crucial aspect, especially from a regulation criteria perspective in on/off controlled GSHP systems. In this context, a novel numerical GSHE model has been developed at the Instituto de Ingeniería Energética, Universitat Politècnica de València. Based on the decoupling of the short-term and the long-term response of the GSHE, the novel model allows the use of faster and more precise models on both sides. In particular, the short-term model considered is the B2G model, developed and validated in previous research works conducted at the Instituto de Ingeniería Energética. For the long-term, the g-function model was selected, since it is a previously validated and widely used model, and presents some interesting features that are useful for its combination with the B2G model. The aim of the present paper is to describe the procedure of combining these two models in order to obtain a unique complete GSHE model for both short- and long-term simulation. The resulting model is then validated against experimental data from a real GSHP installation.