180 resultados para Reinforcement material
Resumo:
This paper presents a practical algorithm for the simulation of interactive deformation in a 3D polygonal mesh model. The algorithm combines the conventional simulation of deformation using a spring-mass-damping model, solved by explicit numerical integration, with a set of heuristics to describe certain features of the transient behaviour, to increase the speed and stability of solution. In particular, this algorithm was designed to be used in the simulation of synthetic environments where it is necessary to model realistically, in real time, the effect on non-rigid surfaces being touched, pushed, pulled or squashed. Such objects can be solid or hollow, and have plastic, elastic or fabric-like properties. The algorithm is presented in an integrated form including collision detection and adaptive refinement so that it may be used in a self-contained way as part of a simulation loop to include human interface devices that capture data and render a realistic stereoscopic image in real time. The algorithm is designed to be used with polygonal mesh models representing complex topology, such as the human anatomy in a virtual-surgery training simulator. The paper evaluates the model behaviour qualitatively and then concludes with some examples of the use of the algorithm.
Resumo:
A new elastic–viscoplastic (EVP) soil model has been used to simulate the measured deformation response of a soft estuarine soil loaded by a stage-constructed embankment. The simulation incorporates prefabricated vertical drains installed in the foundation soils and reinforcement installed at the base of the embankment. The numerical simulations closely matched the temporal changes in surface settlement beneath the centerline and shoulder of the embankment. More importantly, the elastic–viscoplastic model simulated the pattern and magnitudes of the lateral deformations beneath the toe of the embankment — a notoriously difficult aspect of modelling the deformation response of soft soils. Simulation of the excess pore-water pressure proved more difficult because of the heterogeneous nature of the estuarine deposit. Excess pore-water pressures were, however, mapped reasonably well at three of the six monitoring locations. The simulations were achieved using a small set of material constants that can easily be obtained from standard laboratory tests. This study validates the use of the EVP model for problems involving soft soil deposits beneath loading from a geotechnical structure.
Resumo:
Polypropylene (PP), a semi-crystalline material, is typically solid phase thermoformed at temperatures associated with crystalline melting, generally in the 150° to 160°Celsius range. In this very narrow thermoforming window the mechanical properties of the material rapidly decline with increasing temperature and these large changes in properties make Polypropylene one of the more difficult materials to process by thermoforming. Measurement of the deformation behaviour of a material under processing conditions is particularly important for accurate numerical modelling of thermoforming processes. This paper presents the findings of a study into the physical behaviour of industrial thermoforming grades of Polypropylene. Practical tests were performed using custom built materials testing machines and thermoforming equipment at Queen′s University Belfast. Numerical simulations of these processes were constructed to replicate thermoforming conditions using industry standard Finite Element Analysis software, namely ABAQUS and custom built user material model subroutines. Several variant constitutive models were used to represent the behaviour of the Polypropylene materials during processing. This included a range of phenomenological, rheological and blended constitutive models. The paper discusses approaches to modelling industrial plug-assisted thermoforming operations using Finite Element Analysis techniques and the range of material models constructed and investigated. It directly compares practical results to numerical predictions. The paper culminates discussing the learning points from using Finite Element Methods to simulate the plug-assisted thermoforming of Polypropylene, which presents complex contact, thermal, friction and material modelling challenges. The paper makes recommendations as to the relative importance of these inputs in general terms with regard to correlating to experimentally gathered data. The paper also presents recommendations as to the approaches to be taken to secure simulation predictions of improved accuracy.
Resumo:
This study concerns the spatial allocation of material flows, with emphasis on construction material in the Irish housing sector. It addresses some of the key issues concerning anthropogenic impact on the environment through spatial temporal visualisation of the flow of materials, wastes and emissions at different spatial levels. This is presented in the form of a spatial model, Spatial Allocation of Material Flow Analysis (SAMFA), which enables the simulation of construction material flows and associated energy use. SAMFA parallels the Island Limits project (EPA funded under 2004-SD-MS-22-M2), which aimed to create a material flow analysis of the Irish economy classified by industrial sector. SAMFA further develops this by attempting to establish the material flows at the subnational geographical scale that could be used in the development of local authority (LA) sustainability strategies and spatial planning frameworks by highlighting the cumulative environmental impacts of the development of the built environment. By drawing on the idea of planning support systems, SAMFA also aims to provide a cross-disciplinary, integrative medium for involving stakeholders in strategies for a sustainable built environment and, as such, would help illustrate the sustainability consequences of alternative The pilot run of the model in Kildare has shown that the model can be successfully calibrated and applied to develop alternative material flows and energy-use scenarios at the ED level. This has been demonstrated through the development of an integrated and a business-as-usual scenario, with the former integrating a range of potential material efficiency and energysaving policy options and the latter replicating conditions that best describe the current trend. Their comparison shows that the former is better than the latter in terms of both material and energy use. This report also identifies a number of potential areas of future research and areas of broader application. This includes improving the accuracy of the SAMFA model (e.g. by establishing actual life expectancy of buildings in the Irish context through field surveys) and the extension of the model to other Irish counties. This would establish SAMFA as a valuable predicting and monitoring tool that is capable of integrating national and local spatial planning objectives with actual environmental impacts. Furthermore, should the model prove successful at this level, it then has the potential to transfer the modelling approach to other areas of the built environment, such as commercial development and other key contributors of greenhouse emissions. The ultimate aim is to develop a meta-model for predicting the consequences of consumption patterns at the local scale. This therefore offers the possibility of creating critical links between socio technical systems with the most important challenge of all the limitations of the biophysical environment.