117 resultados para Reinforced concrete.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Concrete cover separation is a common failure mode of reinforced concrete (RC) beams strengthened with a fibre-reinforced polymer (FRP) plate bonded to the tension face (FRP-plated RC beams). Plate-end FRP U-jackets have previously been explored as a mitigation measure to delay or suppress concrete cover separation, although its effectiveness needs further clarification. The paper presents the first systemic experimental study on the use of FRP U-jackets of different forms for mitigating the concrete cover separation failure. A total of ten full-scale FRP-plated RC beams were tested. The test results show that both the ultimate load and the ductility of the beams were enhanced by the U-jackets. Among the forms of U-jackets explored, those inclined at 45o are the most effective.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carbonation and chloride ingress are the two main causes of corrosion in reinforced concrete structures. An investigation to monitor the ingress of chlorides and carbonation during a 9 month wetting and drying exposure regime to simulate conditions in which multiple mode transport mechanisms are active was conducted on a variety of binders. The penetration was evaluated using water and acid soluble chloride profiles, and phenolphthalein indicator. X-ray diffraction was also used to determine the presence of bound chlorides and carbonation. The results indicated that acid extraction of chlorides is quantitatively reliable and practical for assessing penetration. The effect of carbonation on binding capability was observed and the relative quantity of chlorides also showed a correlation with the amount of chlorides bound in the form of Friedel’s salt.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chloride-induced corrosion of steel in reinforced concrete structures is one of the main problems affecting their durability, but most previous research projects and case studies have focused on concretes without cracks or not subjected to any structural load. Although it has been recognised that structural cracks do influence the chloride transport and chloride induced corrosion in reinforced concrete structures, there is little published work on the influence of micro-cracks due to service loads on these properties. Therefore the effect of micro-cracks caused by loading on chloride transport into concrete was studied. Four different stress levels (0%, 25%, 50% and 75% of the stress at ultimate load – fu) were applied to 100 mm diameter concrete discs and chloride migration was measured using a bespoke test setup based on the NT BUILD 492 test. The effects of replacing Portland cement CEMI by ground granulated blast-furnace slag (GGBS), pulverised fuel ash (PFA) and silica fume (SF) on chloride transport in concrete under sustained loading were studied. The results have indicated that chloride migration coefficients changed little when the stress level was below 50% of the fu; however, it is desirable to keep concrete stress less than 25% fu if this is practical. The effect of removing the load on the change of chloride migration coefficient was also studied. A recovery of around 50% of the increased chloride migration coefficient was found in the case of concretes subjected to 75% of the fu when the load was removed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carbonation and chloride ingress are the two main causes of corrosion in reinforced concrete structures. An investigation to monitor the ingress of chlorides and the effect of carbonation on chloride ingression during an accelerated 12 month cyclic wetting and drying exposure regime that simulates conditions in which multiple mode transport mechanisms are active was conducted on ground granulated blast furnace slag (GGBS) concrete. The penetration of chloride and carbon dioxide was evaluated using water and acid soluble chloride profiles and phenolphthalein indicator, respectively. The results indicated that when chloride and carbon dioxide ingress concomitantly the effects can be adverse. Carbonation has a detrimental effect on the binding capacity of the concrete, increasing the concentration of free (water soluble) chlorides. This contributed to greater concentration and greater penetration of chlorides and thus an increased corrosion risk.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

New techniques based on embedded sensors have been developed for monitoring reinforced concrete structures for assessing their durability, which can be used instead of the conventional non-destructive test techniques. The continuous monitoring of concrete for its durability with various types of sensors allows not only early assessment of the potential durability of structures, but also a prediction of their service life. Effrosyni Tzoura and Muhammed Basheer of University of Leeds, Sreejith Nanukuttan and Danny McPolin of Queen's University Belfast, John McCarter of Heriot-Watt University, Ken Grattan and Tong Sun of City University London and Sudarshan Srinivasan of Mott MacDonald report.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes a modification to the ACI 318-02 equivalent frame method of analysis of reinforced concrete flat plate exterior panels. Two existing code methods were examined: ACI 318 and BS 8110. The derivation of the torsional stiffness of the edge strip as proposed by ACI 318 is examined and a more accurate estimate of this value is proposed, based on both theoretical analysis and experimental results. A series of 1/3-scale models of flat plate exterior panels have been tested. Unique experimental results were obtained by measuring strains in reinforcing bars at approximately 200 selected locations in the plate panel throughout the entire loading history. The measured strains were used to calculate curvature and, hence, bending moments; these were used along with moments in the columns to assess the accuracy of the equivalent frame methods. The proposed method leads to a more accurate prediction of the moments in the plate at the column front face, at the panel midspan, and in the edge column. Registered Subscribers: View the full article. This document is available as a free download to qualified members. An electronic (PDF) version is available for purchase and download. Click on the Order Now button to continue with the download.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports a study carried out to develop a self-compacting fibre reinforced concrete containing a high fibre content with slurry infiltrated fibre concrete (SIFCON). The SIFCON was developed with 10% of steel fibres which are infiltrated by self-compacting cement slurry without any vibration. Traditionally, the infiltration of the slurry into the layer of fibres is carried out under intensive vibration. A two-level fractional factorial design was used to optimise the properties of cement-based slurries with four independent variables, such as dosage of silica fume, dosage of superplasticiser, sand content, and water/cement ratio (W/C). Rheometer, mini-slump test, Lombardi plate cohesion meter, J-fibre penetration test, and induced bleeding were used to assess the behaviour of fresh cement slurries. The compressive strengths at 7 and 28 days were also measured. The statistical models are valid for slurries made with W/C of 0.40 to 0.50, 50 to 100% of sand by mass of cement, 5 to 10% of silica fume by mass of cement, and SP dosage of 0.6 to 1.2% by mass of cement. This model makes it possible to evaluate the effect of individual variables on measured parameters of fresh cement slurries. The proposed models offered useful information to understand trade-offs between mix variables and compare the responses obtained from various test methods in order to optimise self-compacting SIFCON.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The deterioration of infrastructure, such as bridges, has been one of the major challenges facing both the designers and the owners of such utilities. Sustainable development and a climate of increasing commercialism has led to a requirement for more accurate means of structural analysis. Bridge assessment is one area where this is particularly relevant. It has been known for some time that bridge deck slabs have inherent enhanced strength due to the presence of arching or compressive membrane action (CMA) but only in recent years has there been some acceptance of a rational treatment of this phenomenon for design and assessment purposes. To use the benefits of arching action, this paper presents the results of tests carried out on a reinforced-concrete beam and slab bridge in Northern Ireland that incorporated novel reinforcement type and position. The research was aimed at extending previous laboratory tests on 1/3scale bridge deck edge panels. The measured crack widths and deflections have been compared with the current code requirements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes an experimental investigation of the behaviour of corroded reinforced concrete beams. These have been stored in a chloride environment for a period of 26 years under service loading so as to be representative of real structural and environmental conditions. The configuration and the widths of the cracks in the two seriously corroded short-span beams were depicted carefully, and then the beams were tested until failure by a three-point loading system. Another two beams of the same age but without corrosion were also tested as control specimens. A short span arrangement was chosen to investigate any effect of a reduction in the area and bond strength of the reinforcement on shear capacity. The relationship of load and deflection was recorded so as to better understand the mechanical behaviour of the corroded beams, together with the slip of the tensile bars. The corrosion maps and the loss of area of the tensile bars were also described after having extracted the corroded bars from the concrete beams. Tensile tests of the main longitudinal bars were also carried out. The residual mechanical behaviour of the beams is discussed in terms of the experimental results and the cracking maps. The results show that the corrosion of the reinforcement in the beams induced by chloride has a very important effect on the mechanical behaviour of the short-span beams, as loss of cross-sectional area and bond strength have a very significant effect on the bending capacity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract This work addresses the problems of effective in situ measurement of the initiation or the rate of steel corrosion in reinforced concrete structures through the use of optical fiber sensor systems. By undertaking a series of tests over prolonged periods, coupled with acceleration of corrosion, the performance of fiber Bragg grating-based sensor systems attached to high-tensile steel reinforcement bars (ldquorebarsrdquo), and cast into concrete blocks was determined, and the results compared with those from conventional strain gauges where appropriate. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors failed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents experimental tests carried out on steel fibre reinforced concrete samples, including mechanical tests as well as non-destructive technique (electrical resistivity) and non destructive technique on cores (X-ray). Electrical resistivity measurements are done as a blind test, to characterise the electrical anisotropy and deduce the distribution and the orientation of fibres. These results are compared to X-ray imaging to check the quality of the non destructive evaluation. Then, flexural and compressive strength are measured on specimens to assess the influence of fibre distribution on the concrete properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The presence of chloride ions is one of the primary factors causing the degradation of reinforced concrete structures. An investigation to monitor ingress of chlorides during a 24-week wetting and drying exposure regime to simulate conditions in which multiple-mode transport mechanisms are active was conducted on a variety of binders. Penetration was evaluated using free and total chloride profiles. Acid extraction of chlorides is quantitatively reliable and practical for assessing penetration. X-ray diffraction was used to determine the presence of bound chlorides and carbonation. The ability of the cement blends to resist chloride penetration was, from best to worst, ground granulated blast-furnace slag, microsilica, pulverised-fuel ash, Portland cement. The effect of carbonation on binding capability was observed and the relative quantity of chlorides also showed a correlation with the amount of chlorides bound in the form of Friedel’s salt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reinforced concrete (RC) beams may be strengthened for shear using externally bonded fiber reinforced polymer (FRP) composites in the form of side bonding, U-jacketing or complete wrapping. The shear failure of almost all RC beams shear-strengthened with side bonded FRP and the majority of those strengthened with FRP U-jackets, is due to debonding of the FRP. The bond behavior between the externally-bonded FRP reinforcement (referred to as FRP strips for simplicity) and the concrete substrate therefore plays a crucial role in the failure process of these beams. Despite extensive research in the past decade, there is still a lack of understanding of how debonding of FRP strips in such a beam propagates and how the debonding process affects its shear behavior. This paper presents an analytical study on the progressive debonding of FRP strips in such strengthened beams. The complete debonding process is modeled and the contribution of the FRP strips to the shear capacity of the beam is quantified. The validity of the analytical solution is verified by comparing its predictions with numerical results from a finite element analysis. This analytical treatment represents a significant step forward in understanding how interaction between FRP strips, steel stirrups and concrete affects the shear resistance of RC beams shear-strengthened with FRP strips.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RC beams shear strengthened with externally bonded fiber-reinforced polymer (FRP) U strips or side strips usually fail owing to debonding of the bonded FRP shear reinforcement. Because such debonding usually occurs in a brittle manner at relatively small shear crack widths, some of the internal steel stirrups intersected by the critical shear crack may not have reached yielding at beam shear failure. Consequently, the yield stress of internal steel stirrups in such a strengthened RC beam cannot be fully utilized. This adverse shear interaction between the internal steel shear reinforcement and the external FRP shear reinforcement may significantly reduce the benefit of the shear strengthening FRP but has not been considered explicitly by any of the shear strength models in the existing design guidelines. This paper presents a new shear strength model considering this adverse shear interaction through the introduction of a shear interaction factor. A comprehensive evaluation of the proposed model, as well as three other shear strength models, is conducted using a large test database. It is shown that the proposed shear strength model performs the best among the models compared, and the performance of the other shear strength models can be significantly improved by including the proposed shear interaction factor. Finally, a design recommendation is presented.