111 resultados para Recontextualised found object
Resumo:
The light curve of PA-99-N2, one of the recently announced microlensing candidates toward M31, shows small deviations from the standard Paczynski form. We explore a number of possible explanations, including correlations with the seeing, the parallax effect, and a binary lens. We find that the observations are consistent with an unresolved red giant branch or asymptotic giant branch star in M31 being microlensed by a binary lens. We find that the best-fit binary lens mass ratio is similar to1.2x10(-2), which is one of the most extreme values found for a binary lens so far. If both the source and lens lie in the M31 disk, then the standard M31 model predicts the probable mass range of the system to be 0.02-3.6 M-circle dot (95% confidence limit). In this scenario, the mass of the secondary component is therefore likely to be below the hydrogen-burning limit. On the other hand, if a compact halo object in M31 is lensing a disk or spheroid source, then the total lens mass is likely to lie between 0.09 and 32 M-circle dot, which is consistent with the primary being a stellar remnant and the secondary being a low-mass star or brown dwarf. The optical depth (or, alternatively, the differential rate) along the line of sight toward the event indicates that a halo lens is more likely than a stellar lens, provided that dark compact objects comprise no less than 15% (or 5%) of halos.
Resumo:
We report the serendipitous discovery of a new, very low luminosity, cool degenerate in the region of Taurus. The object was found as a very high proper-motion star (mu = 1.'' 3 yr(-1)) on seven I-band UK Schmidt Telescope plates, dating from 1987 to 1994, via digitized scans from the new, fast, high-precision microdensitometer SuperCOSMOS. Photometry and spectrophotometry indicate that the object has a temperature comparable to those of the handful of coolest white dwarfs currently known (T similar to 3900 K). We discuss the relevance of this discovery to current research concerning Galactic structure and evolution.
Resumo:
WecA, an integral membrane protein that belongs to a family of polyisoprenyl phosphate N-acetylhexosamine-1-phosphate transferases, is required for the biosynthesis of O-specific LPS and enterobacterial common antigen in Escherichia coli and other enteric bacteria. WecA functions as an UDP-N-acetylglucosamine (GlcNAc):undecaprenyl-phosphate GlcNAc-1-phosphate transferase. A conserved short sequence motif (His-Ile-His-His; HIHH) and a conserved arginine were identified in WecA at positions 279-282 and 265, respectively. This region is located within a predicted cytosolic segment common to all bacterial homologues of WecA. Both HIHH279-282 and the Arg265 are reminiscent of the HIGH motif (His-Ile-Gly-His) and a nearby upstream lysine, which contribute to the three-dimensional architecture of the nucleotide-binding site among various enzymes displaying nucleotidyltransferase activity. Thus, it was hypothesized that these residues may play a role in the interaction of WecA with UDP-GlcNAc. Replacement of the entire HIHH motif by site-directed mutagenesis produced a protein that, when expressed in the E. coli wecA mutant MV501, did not complement the synthesis of O7 LPS. Membrane extracts containing the mutated protein failed to transfer UDP-GlcNAc into a lipid-rich fraction and to bind the UDP-GlcNAc analogue tunicamycin. Similar results were obtained by individually replacing the first histidine (H279) of the HIHH motif as well as the Arg265 residue. The functional importance of these residues is underscored by the high level of conservation of H279 and Arg265 among bacterial WecA homologues that utilize several different UDP-N-acetylhexosamine substrates.
Resumo:
A model system, HOOFS (Hierarchical Object Orientated Foraging Simulator), has been developed to study foraging by animals in a complex environment. The model is implemented using an individual-based object-orientated structure. Different species of animals inherit their general properties from a generic animal object which inherits from the basic dynamic object class. Each dynamic object is a separate program thread under the control of a central scheduler. The environment is described as a map of small hexagonal patches, each with their own level of resources and a patch-specific rate of resource replenishment. Each group of seven patches (0th order) is grouped into a Ist order super-patch with seven nth order super-patches making up a n + 1th order super-patch for n up to a specified value. At any time each animal is associated with a single patch. Patch choice is made by combining the information on the resources available within different order patches and super-patches along with information on the spatial location of other animals. The degree of sociality of an animal is defined in terms of optimal spacing from other animals and by the weighting of patch choice based on social factors relative to that based on food availability. Information, available to each animal, about patch resources diminishes with distance from that patch. The model has been used to demonstrate that social interactions can constrain patch choice and result in a short-term reduction of intake and a greater degree of variability in the level of resources in patches. We used the model to show that the effect of this variability on the animal's intake depends on the pattern of patch replenishment. (C) 1998 Elsevier Science B.V. All rights reserved.</p>
Resumo:
The development of an automated system for the quality assessment of aerodrome ground lighting (AGL), in accordance with associated standards and recommendations, is presented. The system is composed of an image sensor, placed inside the cockpit of an aircraft to record images of the AGL during a normal descent to an aerodrome. A model-based methodology is used to ascertain the optimum match between a template of the AGL and the actual image data in order to calculate the position and orientation of the camera at the instant the image was acquired. The camera position and orientation data are used along with the pixel grey level for each imaged luminaire, to estimate a value for the luminous intensity of a given luminaire. This can then be compared with the expected brightness for that luminaire to ensure it is operating to the required standards. As such, a metric for the quality of the AGL pattern is determined. Experiments on real image data is presented to demonstrate the application and effectiveness of the system.
Resumo:
Utilising cameras as a means to survey the surrounding environment is becoming increasingly popular in a number of different research areas and applications. Central to using camera sensors as input to a vision system, is the need to be able to manipulate and process the information captured in these images. One such application, is the use of cameras to monitor the quality of airport landing lighting at aerodromes where a camera is placed inside an aircraft and used to record images of the lighting pattern during the landing phase of a flight. The images are processed to determine a performance metric. This requires the development of custom software for the localisation and identification of luminaires within the image data. However, because of the necessity to keep airport operations functioning as efficiently as possible, it is difficult to collect enough image data to develop, test and validate any developed software. In this paper, we present a technique to model a virtual landing lighting pattern. A mathematical model is postulated which represents the glide path of the aircraft including random deviations from the expected path. A morphological method has been developed to localise and track the luminaires under different operating conditions. © 2011 IEEE.
Resumo:
Besides making contact with an approaching ball at the proper place and time, hitting requires control of the effector velocity at contact. A dynamical neural network for the planning of hitting movements was derived in order to account for both these requirements. The model in question implements continuous required velocity control by extending the Vector Integration To Endpoint model while providing explicit control of effector velocity at interception. It was shown that the planned movement trajectories generated by the model agreed qualitatively with the kinematics of hitting movements as observed in two recent experiments. Outstanding features of this comparison concerned the timing and amplitude of the empirical backswing movements, which were largely consistent with the predictions from the model. Several theoretical implications as well as the informational basis and possible neural underpinnings of the model were discussed.
Resumo:
Massive young stellar objects (YSOs) are powerful infrared Hi line emitters. It has been suggested that these lines form in an outflow from a disc surrounding the YSO. Here, new two-dimensional Monte Carlo radiative transfer calculations are described which test this hypothesis. Infrared spectra are synthesized for a YSO disc wind model based on earlier hydrodynamical calculations. The model spectra are in qualitative agreement with the observed spectra from massive YSOs, and therefore provide support for a disc wind explanation for the Hi lines. However, there are some significant differences: the models tend to overpredict the Bra/Br? ratio of equivalent widths and produce line profiles which are slightly too broad and, in contrast to typical observations, are double-peaked. The interpretation of these differences within the context of the disc wind picture and suggestions for their resolution via modifications to the assumed disc and outflow structure are discussed. © 2005 RAS.
Resumo:
Background: From a young age the typical development of social functioning relies upon the allocation of attention to socially relevant information, which in turn allows experience at processing such information and thus enhances social cognition. As such, research has attempted to identify the developmental processes that are derailed in some neuro-developmental disorders that impact upon social functioning. Williams syndrome (WS) and Autism are disorders of development that are characterized by atypical yet divergent social phenotypes and atypicalities of attention to people.
Methods: We used eye tracking to explore how individuals with WS and Autism attended to, and subsequently interpreted, an actor’s eye gaze cue within a social scene. Images were presented for three seconds, initially with an instruction simply to look at the picture. The images were then shown again, with the participant asked to identify the object being looked at. Allocation of eye-gaze in each condition was analyzed by ANOVA and accuracy of identification was compared with t-tests.
Results: Participants with WS allocated more gaze time to face and eyes than their matched controls both with and without being asked to identify the item being looked at; while participants with Autism spent less time on face and eyes in both conditions. When cued to follow gaze, participants with WS increased gaze to the correct targets, while those with Autism looked more at the face and eyes but did not increase gaze to the correct targets, while continuing to look much more than their controls at implausible targets. Both groups identified fewer objects than their controls.
Conclusions: The atypicalities found are likely to be entwined with the deficits shown in interpreting social cognitive cues from the images. WS and Autism are characterised by atypicalities of social attention that impact upon socio-cognitive expertise but importantly the type of atypicality is syndrome-specific.
Resumo:
Manual interception, such as catching or hitting an approaching ball, requires the hand to contact a moving object at the right location and at the right time. Many studies have examined the neural mechanisms underlying the spatial aspects of goal-directed reaching, but the neural basis of the spatial and temporal aspects of manual interception are largely unknown. Here, we used repetitive transcranial magnetic stimulation (rTMS) to investigate the role of the human middle temporal visual motion area (MT+/V5) and superior parieto-occipital cortex (SPOC) in the spatial and temporal control of manual interception. Participants were required to reach-to-intercept a downward moving visual target that followed an unpredictably curved trajectory, presented on a screen in the vertical plane. We found that rTMS to MT+/V5 influenced interceptive timing and positioning, whereas rTMS to SPOC only tended to increase the spatial variance in reach end points for selected target trajectories. These findings are consistent with theories arguing that distinct neural mechanisms contribute to spatial, temporal, and spatiotemporal control of manual interception.