168 resultados para Receptor Expression


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Signalling interplay between transforming growth factor-beta (TGF beta) and CCN2 [also called connective tissue growth factor (CTGF)] plays a crucial role in the progression of diabetic nephropathy and has been implicated in cellular differentiation. To investigate the potential role of microRNAs (miRNAs) in the mediation of this signalling network, we performed miRNA screening in mesangial cells treated with recombinant human CCN2. Analysis revealed a cohort of 22 miRNAs differentially expressed by twofold or more, including members of the miR-302 family. Target analysis of miRNA to 3'-untranslated regions (3'-UTRs) identified TGF beta receptor II (T beta RII) as a potential miR-302 target. In mesangial cells, decreased T beta RII expression was confirmed in response to CCN2 together with increased expression of miR-302d. T beta RII was confirmed as an miR-302 target, and inhibition of miR-302d was sufficient to attenuate the effect of CCN2 on T beta RII. Data from the European Renal cDNA Biopsy Bank revealed decreased T beta RII in diabetic patients, suggesting pathophysiological significance. In a mouse model of fibrosis (UUO), miR-302d was increased, with decreased T beta RII expression and aberrant signalling, suggesting relevance in chronic fibrosis. miR-302d decreased TGF beta-induced epithelial mesenchymal transition (EMT) in renal HKC8 epithelial cells and attenuated TGF beta-induced mesangial production of fibronectin and thrombospondin. In summary, we demonstrate a new mode of regulation of TGF beta by CCN2, and conclude that the miR-302 family has a role in regulating growth factor signalling pathways, with implications for nephropathic cell fate transitions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: The airway epithelium is exposed to a range of physical and chemical irritants in the environment that are known to trigger asthma. Transient receptor potential (TRP) cation channels play a central role in sensory responses to noxious physical and chemical stimuli. Recent genetic evidence suggests an involvement of transient receptor potential vanilloid 1 (TRPV1), one member of the vanilloid subfamily of TRP channels, in the pathophysiology of asthma. The functional expression of TRPV1 on airway epithelium has yet to be elucidated.

OBJECTIVE: In this study we examined the molecular, functional, and immunohistochemical expression of TRPV1 in asthmatic and healthy airways.

METHODS: Bronchial biopsy specimens and bronchial brushings were obtained from healthy volunteers (n = 18), patients with mild-to-moderate asthma (n = 24), and patients with refractory asthma (n = 22). Cultured primary bronchial epithelial cells from patients with mild asthma (n = 4), nonasthmatic coughers (n = 4), and healthy subjects (n = 4) were studied to investigate the functional role of TRPV1.

RESULTS: Quantitative immunohistochemistry revealed significantly more TRPV1 expression in asthmatic patients compared with healthy subjects, with the greatest expression in patients with refractory asthma (P = .001). PCR and Western blotting analysis confirmed gene and protein expression of TRPV1 in cultured primary bronchial epithelial cells. Patch-clamp electrophysiology directly confirmed functional TRPV1 expression in all 3 groups. In functional assays the TRPV1 agonist capsaicin induced dose-dependent IL-8 release, which could be blocked by the antagonist capsazepine. Reduction of external pH from 7.4 to 6.4 activated a capsazepine-sensitive outwardly rectifying membrane current.

CONCLUSIONS: Functional TRPV1 channels are present in the human airway epithelium and overexpressed in the airways of patients with refractory asthma. These channels might represent a novel therapeutic target for the treatment of uncontrolled asthma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Patterns of glycosylation are important in cancer, but the molecular mechanisms that drive changes are often poorly understood. The androgen receptor drives prostate cancer (PCa) development and progression to lethal metastatic castration-resistant disease. Here we used RNA-Seq coupled with bioinformatic analyses of androgen-receptor (AR) binding sites and clinical PCa expression array data to identify ST6GalNAc1 as a direct and rapidly activated target gene of the AR in PCa cells. ST6GalNAc1 encodes a sialytransferase that catalyses formation of the cancer-associated sialyl-Tn antigen (sTn), which we find is also induced by androgen exposure. Androgens induce expression of a novel splice variant of the ST6GalNAc1 protein in PCa cells. This splice variant encodes a shorter protein isoform that is still fully functional as a sialyltransferase and able to induce expression of the sTn-antigen. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in PCa cells reduced formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, beingsignificantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue. ST6GalNAc1 is frequently upregulated concurrently with another important glycosylation enzyme GCNT1 previously associated with prostate cancer progression and implicated in Sialyl Lewis X antigen synthesis. Together our data establishes an androgen-dependent mechanism for sTn antigen expression in PCa, and are consistent with a general role for the androgen receptor in driving important coordinate changes to the glycoproteome during PCa progression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: Transient receptor potential (TRP) channels are widely, but not uniformly, distributed in tissues. To date the dominant focus of attention has been on TRP expression and functionality in neurons. However, their expression and activation in selected non-neuronal cells suggest TRPs have a potential role in coordinating cross-talk during the inflammatory process. Fibroblasts comprise the major cell type in the dental pulp and play an important role in pulpal inflammation. Objectives: The aim of this study was to investigate the expression and functionality of the TRP channels TRPA1, TRPM8, TRPV4 and TRPV1 in human dental pulp fibroblasts. Methods: Dental pulp fibroblasts were derived by explant culture of pulps removed from extracted healthy teeth. Fibroblasts were cultured in DMEM supplemented with 10% FCS, 100U/ml penicillin and 100µg/ml streptomycin. Protein expression of TRP channels was investigated by SDS- polyacrylamide gel electrophoresis and Western blotting of cell lysates from fibroblast cells in culture. TRPA1, TRPM8, TRPV4 and TRPV1 expression was determined by specific antibodies, detected using appropriate anti-species antibodies and chemiluminescence. Functionality of TRP channels was determined by Ca2+ microfluorimetry. Cells were grown on cover slips and incubated with Fura 2AM prior to stimulation with icilin (TRPA1 agonist), menthol (TRPM8 agonist), 4 alpha-phorbol 12,13-didecanoate (4alphaPDD) (TRPV4 agonist) or capsaicin (TRPV1 agonist). Emitted fluorescence (F340/F380) was used to determine intracellular [Ca2+] levels. Results: Fibroblast expression of TRPA1, TRPM8, TRPV4 and TRPV1 was confirmed at the protein level by Western blotting. Increased intracellular [Ca2+] levels in response to icillin, methanol, 4alphaPDD and capsacin, indicated functional expression of TRPA1, TRPM8, TRPV4 and TRPV respectively. Conclusions: The presence and functionality of TRP channels on dental pulp fibroblasts suggests a potential role for these cells in the pulpal neurogenic inflammatory response. (Supported by a research grant from the Royal College of Surgeons of Edinburgh).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: Protease activated receptors (PARs) are G-protein-coupled transmembrane receptors that are expressed on many cell types and implicated in various inflammatory processes in vivo. The induction of PAR2 as a result of the inflammatory response associated with dental caries remains to be determined. Objectives: The aim was to localise the expression of PAR2 in human dental pulp from carious teeth and to confirm receptor functionality using an in vitro assay. Methods: Dental pulp sections from decalcified carious teeth were examined by immunocytochemsitry. Membrane preparations from cultured pulp fibroblasts were subject to SDS-PAGE and immunoblotting to confirm fibroblast-associated immunoreactivity. The functionality of PAR2 on dental pulp fibroblasts was studied using calcium imaging in the presence of several potential activators including a PAR2 agonist (PAR2-AP), trypsin and pulpal enzymes from a carious tooth. Results: Immunocytochemistry revealed intense PAR2 immunoreactivity on pulpal fibroblasts subjacent to carious lesions but not in surrounding regions of the dental pulp. Pulp specimens from a dental injury model showed no expression of PAR2, suggesting its expression was related to cellular changes associated with ongoing caries. The localisation of PAR2 staining to pulpal fibroblasts in carious teeth was confirmed by Western blotting which revealed PAR2 immunoreactive bands in membrane fractions prepared from pulp fibroblasts. In functional studies, challenge of cultured pupal fibroblasts with PAR2-AP, trypsin and an extract of proteolytic enzymes from a carious dental pulp, showed specific activation of PAR2. Conclusions: This work demonstrates that PAR2 is functional and inducible in human dental pulp fibroblasts in response to caries and that endogenous pulpal enzymes can activate PAR2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To quantitatively measure VIP levels and to qualitatively study the distribution of VIP fibres and demonstrate the presence of the VPAC1 receptor in human dental pulp from carious and non-carious adult human teeth. Design: Dental pulp samples were collected from non-carious, moderately carious and grossly carious adult human teeth. VIP levels were determined using radioimmunoassay. The distribution of VIP fibres was studied using immunohistochemistry. The VPAC1 receptor protein expression was determined by Western blotting. Results: VIP levels were found to be significantly elevated in the dental pulp of moderately carious compared with non-carious (p = 0.0032) or grossly carious teeth (p = 0.0029). The distribution of VIP fibres was similar in non-carious and carious teeth, except that nerve bundles appeared thicker in the pulp samples from carious compared with non-carious teeth. Western blotting indicated that the VPAC1 receptor proteins were detected in similar levels in pooled dental pulp samples from both carious and non-carious teeth. Conclusion: It is concluded that quantitative changes in the levels of VIP in human dental pulp during the caries process and the expression of VPAC1 receptor proteins in membrane extracts from carious and non-carious teeth suggests a role for VIP in modulating pulpal health and disease. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Estrogen acutely activates endothelial nitric oxide synthase (eNOS). However, the identity of the receptors involved in this rapid response remains unclear. Methods and Results We detected an estrogen receptor (ER) transcript in human endothelial cells that encodes a truncated 46-kDa ER (1a-hER-46). A corresponding 46-kDa ER protein was identified in endothelial cell lysates. Transfection of cDNAs encoding the full-length ER (ER-66) and 1a-hER-46 resulted in appropriately sized recombinant proteins identified by anti-ER antibodies. Confocal microscopy revealed that a proportion of both ER-66 and hER-46 was localized outside the nucleus and mediated specific cell-surface binding of estrogen as assessed by FITC-conjugated, BSA-estrogen binding studies. Both ER isoforms colocalized with eNOS and mediated acute activation of eNOS in response to estrogen stimulation. However, estrogen-stimulated transcriptional activation mediated by 1a-hER-46 was much less than with ER-66. Furthermore, 1a-hER-46 inhibited classical hER-66 mediated transcriptional activation in a dominant-negative fashion. Conclusions These findings suggest that expression of an alternatively spliced, truncated ER isoform in human endothelial cells confers a unique ability to mediate acute but not transcriptional responses to estrogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the effects of elevated D-glucose concentrations on vascular smooth muscle cell (VSMC) expression of the platelet-derived growth factor (PDGF) beta receptor and VSMC migratory behavior. Immunoprecipitation, immunofluorescent staining, and RT-PCR of human VSMCs showed that elevated D-glucose induced an increase in the PDGF beta receptor that was inhibited by phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathway inhibitors. Exposure to 25 mmol/l D-glucose (HG) induced increased phosphorylation of protein kinase B (PKB) and extracellular-regulated kinase (ERK). All HG chemotaxis assays (with either 10 days' preincubation in HG or no preincubation) in a FCS or PDGF-BB gradient showed positive chemotaxis, whereas those in 5 mmol/l D-glucose did not. Assays were also run with concentrations ranging from 5 to 25 mmol/l D-glucose. Chemotaxis was induced at concentrations >9 mmol/l D-glucose. An anti-PDGF beta receptor antibody inhibited glucose-potentiated VSMC chemotaxis, as did the inhibitors for the PI3K and MAPK pathways. This study has shown that small increases in D-glucose concentration, for a short period, increase VSMC expression of the PDGF beta receptor and VSMC sensitivity to chemotactic factors in serum, leading to altered migratory behavior in vitro. It is probable that similar processes occur in vivo with glucose-enhanced chemotaxis of VSMCs, operating through PDGF beta receptor-operated pathways, contributing to the accelerated formation of atheroma in diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms by which excessive glucocorticoids cause muscular atrophy remain unclear. We previously demonstrated that dexamethasone increases the expression of myostatin, a negative regulator of skeletal muscle mass, in vitro. In the present study, we tested the hypothesis that dexamethasone-induced muscle loss is associated with increased myostatin expression in vivo. Daily administration (60, 600, 1,200 micro g/kg body wt) of dexamethasone for 5 days resulted in rapid, dose-dependent loss of body weight (-4.0, -13.4, -17.2%, respectively, P <0.05 for each comparison), and muscle atrophy (6.3, 15.0, 16.6% below controls, respectively). These changes were associated with dose-dependent, marked induction of intramuscular myostatin mRNA (66.3, 450, 527.6% increase above controls, P <0.05 for each comparison) and protein expression (0.0, 260.5, 318.4% increase above controls, P <0.05). We found that the effect of dexamethasone on body weight and muscle loss and upregulation of intramuscular myostatin expression was time dependent. When dexamethasone treatment (600 micro g. kg-1. day-1) was extended from 5 to 10 days, the rate of body weight loss was markedly reduced to approximately 2% within this extended period. The concentrations of intramuscular myosin heavy chain type II in dexamethasone-treated rats were significantly lower (-43% after 5-day treatment, -14% after 10-day treatment) than their respective corresponding controls. The intramuscular myostatin concentration in rats treated with dexamethasone for 10 days returned to basal level. Concurrent treatment with RU-486 blocked dexamethasone-induced myostatin expression and significantly attenuated body loss and muscle atrophy. We propose that dexamethasone-induced muscle loss is mediated, at least in part, by the upregulation of myostatin expression through a glucocorticoid receptor-mediated pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypothesis that endothelin (ET) receptor mechanisms are altered during development and progression of left ventricular hypertrophy (LVH) in vivo was tested using spontaneously hypertensive rats (SHRs). Ventricular cardiomyocytes were isolated from SHRs before onset (8 and 12 wk) and during progression (16, 20, and 24 wk) of LVH and compared with age-matched normotensive Wistar-Kyoto (WKY) rats. PreproET-1 mRNA expression was elevated in SHR (P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To determine the effects of age and dual endothelin (ET)A/ETB receptor antagonism (bosentan) on aortic matrix metalloproteinase (MMP) abundance and tissue inhibitor of metalloproteinase (TIMP) expression in normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). METHODS: Male SHR and control WKY rats were randomly assigned to receive placebo or bosentan (100 mg/kg per day) for 3 months. Animals were killed under terminal anaesthesia at either 20 weeks (adult) or 17-20 months (senescent). Aortic gelatinase activity was determined by zymography, whereas MT-1 MMP and TIMP-1 expression were assessed by immunoblotting. RESULTS: In WKY rats, aortic MMP-2 but not proMMP-2 activity was 3.6-fold higher (P <0.02) in the senescent compared with the adult group. TIMP-1 (twofold) and MT-1 MMP (3.8-fold) expression increased (P <0.05) with age in the WKY groups. Short-term hypertension (adult SHR versus adult WKY) increased MMP-2 to 74.7 +/- 14.1 from 18.9 +/- 3.5 arbitrary units (AU) (P = 0.0012), but did not alter proMMP-2 activity. This increased further on progression to chronic hypertension (117.4 +/- 12.2 versus 74.7 +/- 14.1 AU; P <0.02). Bosentan decreased MMP-2 (78.9 +/- 3.8 versus 117.4 +/- 12.2 AU; P = 0.014) and proMMP-2 activity (P <0.006) in the senescent SHR group. CONCLUSION: Ageing and the development/progression of hypertension are associated with increased MMP-2 activity in the aorta, which is consistent with ongoing remodelling of the vasculature. However, the underlying mechanisms regulating MMP-2 abundance in ageing and hypertension appear to be divergent, as MT-1 MMP expression is differentially altered. Dual ETA/ETB receptor antagonism did not alter the age-dependent increase in aortic MMP activity in normotensive rats. However, bosentan decreased pro and active MMP-2 activity in senescent SHR rats, indicating that ET modulates late events in vascular remodelling in hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background BRCA1-mutant breast tumors are typically estrogen receptor alpha (ER alpha) negative, whereas most sporadic tumors express wild-type BRCA1 and are ER alpha positive. We examined a possible mechanism for the observed ER alpha-negative phenotype of BRCA1-mutant tumors.

Methods We used a breast cancer disease-specific microarray to identify transcripts that were differentially expressed between paraffin-embedded samples of 17 BRCA1-mutant and 14 sporadic breast tumors. We measured the mRNA levels of estrogen receptor 1 (ESR1) ( the gene encoding ER alpha), which was differentially expressed in the tumor samples, by quantitative polymerase chain reaction. Regulation of ESR1 mRNA and ER alpha protein expression was assessed in human breast cancer HCC1937 cells that were stably reconstituted with wild-type BRCA1 expression construct and in human breast cancer T47D and MCF-7 cells transiently transfected with BRCA1-specific short-interfering RNA ( siRNA). Chromatin immunoprecipitation assays were performed to determine if BRCA1 binds the ESR1 promoter and to identify other interacting proteins. Sensitivity to the antiestrogen drug fulvestrant was examined in T47D and MCF-7 cells transfected with BRCA1-specific siRNA. All statistical tests were two-sided.

Results Mean ESR1 gene expression was 5.4-fold lower in BRCA1-mutant tumors than in sporadic tumors ( 95% confidence interval [CI]=2.6-fold to 40.1-fold, P =.0019). The transcription factor Oct-1 recruited BRCA1 to the ESR1 promoter, and both BRCA1 and Oct-1 were required for ER alpha expression. BRCA1-depleted breast cancer cells expressing exogenous ER alpha were more sensitive to fulvestrant than BRCA1-depleted cells transfected with empty vector ( T47D cells, the mean concentration of fulvestrant that inhibited the growth of 40% of the cells [IC40] for empty vector versus ER alpha: > 10(-5) versus 8.0 x 10(-9) M [ 95% CI=3.1x10(-10) to 3.2 x 10(-6) M]; MCF-7 cells, mean IC40 for empty vector versus ER alpha : > 10(-5) versus 4.9 x 10(-8) M [ 95% CI=2.0 x 10(-9) to 3.9 x 10(-6) M]).

Conclusions BRCA1 alters the response of breast cancer cells to antiestrogen therapy by directly modulating ER alpha expression.