136 resultados para Rays


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The RBE of alpha -particles in different mutations of Chinese hamster cells was determined with the aim of identifying differences in the sensitivity to x-ray and alpha -particle-induced DNA damage. Two parental lines of Chinese hamster cells and four radiosensitive mutants were irradiated with different single doses of x-rays and alpha -particles and clonogenic cell survival was determined. Radiosensitivity to x-rays varied by a factor of 5 between the cell strains whereas sensitivity to alpha -particle irradiation was almost identical among all strains. The RBE is only determined by the sensitivity of the cells towards x-rays. Since cells with different defects of repair or cell cycle control have different radiosensitivities, we conclude that the effects of x-ray irradiation and the RBE are mostly determined by the activity of repair processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of microbeams is providing new insights into the actions of radiation at the cell and tissue levels. So far, this has been achieved exclusively through the use of collimated charged particles. One alternative is to use ultrasoft X rays, focused by X-ray diffractive optics. We have developed a unique facility that uses 0.2-0.8-mm-diameter zone plates to focus ultrasoft X rays to a beam of less than 1 mum diameter. The zone plate images characteristic K-shell X rays of carbon or aluminum, generated by focusing a beam of 5-10 keV electrons onto the appropriate target. By reflecting the X rays off a grazing-incidence mirror, the contaminating bremsstrahlung radiation is reduced to 2%. The focused X rays are then aimed at selected subcellular targets using rapid automated cell-finding and alignment procedures; up to 3000 cells per hour can be irradiated individually using this arrangement. (C) 2001 by Radiation Research Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rejoining kinetics of double-stranded DNA fragments, along with measurements of residual damage after postirradiation incubation, are often used as indicators of the biological relevance of the damage induced by ionizing radiation of different qualities. Although it is widely accepted that high-LET radiation-induced double-strand breaks (DSBs) tend to rejoin with kinetics slower than low-LET radiation-induced DSBs, possibly due to the complexity of the DSB itself, the nature of a slowly rejoining DSB-containing DNA lesion remains unknown. Using an approach that combines pulsed-field gel electrophoresis (PFGE) of fragmented DNA from human skin fibroblasts and a recently developed Monte Carlo simulation of radiation-induced DNA breakage and rejoining kinetics, we have tested the role of DSB-containing DNA lesions in the 8-kbp-5.7-Mbp fragment size range in determining the DSB rejoining kinetics. It is found that with low-LET X rays or high LET alpha particles, DSB rejoining kinetics data obtained with PFGE can be computer-simulated assuming that DSB rejoining kinetics does not depend on spacing of breaks along the chromosomes. After analysis of DNA fragmentation profiles, the rejoining kinetics of X-ray-induced DSBs could be fitted by two components: a fast component with a half-life of 0.9 +/- 0.5 h and a slow component with a half-life of 16 +/- 9 h. For a particles, a fast component with a half-life of 0.7 +/- 0.4 h and a slow component with a half-life of 12 5 h along with a residual fraction of unrepaired breaks accounting for 8% of the initial damage were observed. In summary, it is shown that genomic proximity of breaks along a chromosome does not determine the rejoining kinetics, so the slowly rejoining breaks induced with higher frequencies after exposure to high-LET radiation (0.37 +/- 0.12) relative to low-LET radiation (0.22 +/- 0.07) can be explained on the basis of lesion complexity at the nanometer scale, known as locally multiply damaged sites. (c) 2005 by Radiation Research Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resonant transfer and excitation (RTE) is investigated for Fe(q+) ions (q=23, 24, and 25) colliding with H2. For each charge state, cross sections for RTE were obtained from measurements of K x rays, emitted from the doubly excited intermediate state, coincident with single-electron capture by the incident ion. Additionally, for Fe25+ cross sections were obtained from measurements of coincidences between the two K x rays emitted from the intermediate state. These latter measurements Provide information on the lifetimes of intermediate metastable states formed in the RTE process. In all cases, measured cross sections are in good agreement with calculations based on theoretical cross sections for dielectronic recombination (DR). Since RTE closely approximates DR, the results indicate that dielectronic-recombination cross sections involving K-shell excitation can be accurately predicted for highly charged iron ions. The results for Fe25+ show that metastable states are sufficiently short lived to be observable in the RTE (or DR) process for these hydrogenlike ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Respiratory motion introduces complex spatio-temporal variations in the dosimetry of radiotherapy. There is a paucity of literature investigating the radiobiological consequences of intrafraction motion and concerns regarding the impact of movement when applied to cancer cell lines in vitro exist. We have addressed this by developing a novel model which accurately replicates respiratory motion under experimental conditions to allow clinically relevant irradiation of cell lines. A bespoke phantom and motor driven moving platform was adapted to accommodate flasks containing medium and cells in order to replicate respiratory motion using varying frequencies and amplitude settings. To study this effect on cell survival in vitro, dose response curves were determined for human lung cancer cell lines H1299 and H460 exposed to a uniform 6 MV radiation field under moving or stationary conditions. Cell survival curves showed no significant difference between irradiation at different dose points for these cell lines in the presence or absence of motion. These data indicate that motion of unshielded cells in vitro does not affect cell survival in the presence of uniform irradiation. This model provides a novel research platform to investigate the radiobiological consequences of respiratory motion in radiotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is now widely accepted that intercellular communication can cause significant variations in cellular responses to genotoxic stress. The radiation-induced bystander effect is a prime example of this effect, where cells shielded from radiation exposure see a significant reduction in survival when cultured with irradiated cells. However, there is a lack of robust, quantitative models of this effect which are widely applicable. In this work, we present a novel mathematical model of radiation-induced intercellular signalling which incorporates signal production and response kinetics together with the effects of direct irradiation, and test it against published data sets, including modulated field exposures. This model suggests that these so-called "bystander" effects play a significant role in determining cellular survival, even in directly irradiated populations, meaning that the inclusion of intercellular communication may be essential to produce robust models of radio-biological outcomes in clinically relevant in vivo situations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy release from radioactive decays contributes significantly to supernova light curves. Previous works, which considered the energy deposited by ?-rays and positrons produced by Ni, Co, Ni, Co, Ti and Sc, have been quite successful in explaining the light curves of both core collapse and thermonuclear supernovae. We point out that Auger and internal conversion electrons, together with the associated X-ray cascade, constitute an additional heat source. When a supernova is transparent to ?-rays, these electrons can contribute significantly to light curves for reasonable nucleosynthetic yields. In particular, the electrons emitted in the decay of Co, which are largely due to internal conversion from a fortuitously low-lying 3/2 state in the daughter Fe, constitute an additional significant energy-deposition channel. We show that when the heating by these electrons is accounted for, a slow-down in the light curve of SN 1998bw is naturally obtained for typical hypernova nucleosynthetic yields. Additionally, we show that for generic Type Ia supernova yields, the Auger electrons emitted in the ground-state to ground-state electron capture decay of Fe exceed the energy released by the Ti decay chain for many years after the explosion. © 2009 RAS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological validation of new radiotherapy modalities is essential to understand their therapeutic potential. Antiprotons have been proposed for cancer therapy due to enhanced dose deposition provided by antiproton-nucleon annihilation. We assessed cellular DNA damage and relative biological effectiveness (RBE) of a clinically relevant antiproton beam. Despite a modest LET (,19 keV/mm), antiproton spread out Bragg peak (SOBP) irradiation caused significant residual c-H2AX foci compared to X-ray, proton and antiproton plateau irradiation. RBE of ,1.48 in the SOBP and ,1 in the plateau were measured and used for a qualitative effective dose curve comparison with proton and carbon-ions. Foci in the antiproton SOBP were larger and more structured compared to X-rays, protons and carbon-ions. This is likely due to overlapping particle tracks near the annihilation vertex, creating spatially correlated DNA lesions. No biological effects were observed at 28–42 mm away from the primary beam suggesting minimal risk from long-range secondary particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Galactic cosmic-ray (CR) acceleration to the knee in the spectrum at a few PeV is only possible if the magnetic field ahead of a supernova remnant (SNR) shock is strongly amplified by CRs escaping the SNR. A model formulated in terms of the electric charge carried by escaping CRs predicts the maximum CR energy and the energy spectrum of CRs released into the surrounding medium. We find that historical SNRs such as Cas A, Tycho and Kepler may be expanding too slowly to accelerate CRs to the knee at the present time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-consistent interaction between energetic particles and self-generated hydromagnetic waves in a cosmic ray pressure dominated plasma is considered. Using a three-dimensional hybrid magnetohydrodynamics (MHD)-kinetic code, which utilizes a spherical harmonic expansion of the Vlasov-Fokker-Planck equation, high-resolution simulations of the magnetic field growth including feedback on the cosmic rays are carried out. It is found that for shocks with high cosmic ray acceleration efficiency, the magnetic fields become highly disorganized, resulting in near isotropic diffusion, independent of the initial orientation of the ambient magnetic field. The possibility of sub-Bohm diffusion is demonstrated for parallel shocks, while the diffusion coefficient approaches the Bohm limit from below for oblique shocks. This universal behaviour suggests that Bohm diffusion in the root-mean-squared field inferred from observation may provide a realistic estimate for the maximum energy acceleration time-scale in young supernova remnants. Although disordered, the magnetic field is not self-similar suggesting a non-uniform energy-dependent behaviour of the energetic particle transport in the precursor. Possible indirect radiative signatures of cosmic ray driven magnetic field amplification are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on Suzaku observations of selected regions within the southern giant lobe of the radio galaxy Centaurus A. In our analysis we focus on distinct X-ray features detected with the X-ray Imaging Spectrometer within the range 0.5-10 keV, some of which are likely associated with fine structure of the lobe revealed by recent high-quality radio intensity and polarization maps. With the available photon statistics, we find that the spectral properties of the detected X-ray features are equally consistent with thermal emission from hot gas with temperatures kT > 1 keV, or with a power-law radiation continuum characterized by photon indices Gamma similar to 2.0 +/- 0.5. However, the plasma parameters implied by these different models favor a synchrotron origin for the analyzed X-ray spots, indicating that a very efficient acceleration of electrons up to greater than or similar to 10 TeV energies is taking place within the giant structure of Centaurus A, albeit only in isolated and compact regions associated with extended and highly polarized radio filaments. We also present a detailed analysis of the diffuse X-ray emission filling the whole field of view of the instrument, resulting in a tentative detection of a soft excess component best fitted by a thermal model with a temperature of kT similar to 0.5 keV. The exact origin of the observed excess remains uncertain, although energetic considerations point to thermal gas filling the bulk of the volume of the lobe and mixed with the non-thermal plasma, rather than to the alternative scenario involving a condensation of the hot intergalactic medium around the edges of the expanding radio structure. If correct, this would be the first detection of the thermal content of the extended lobes of a radio galaxy in X-rays. The corresponding number density of the thermal gas in such a case is n(g) similar to 10(-4) cm(-3), while its pressure appears to be in almost exact equipartition with the volume-averaged non-thermal pressure provided by the radio-emitting electrons and the lobes' magnetic field. A prominent large-scale fluctuation of the Galactic foreground emission, resulting in excess foreground X-ray emission aligned with the lobe, cannot be ruled out. Although tentative, our findings potentially imply that the structure of the extended lobes in active galaxies is likely to be highly inhomogeneous and non-uniform, with magnetic reconnection and turbulent acceleration processes continuously converting magnetic energy to internal energy of the plasma particles, leading to possibly significant spatial and temporal variations in the plasma beta parameter around the volume-averaged equilibrium condition beta similar to 1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The non-thermal particle spectra responsible for the emission from many astrophysical systems are thought to originate from shocks via a first order Fermi process otherwise known as diffusive shock acceleration. The same mechanism is also widely believed to be responsible for the production of high energy cosmic rays. With the growing interest in collisionless shock physics in laser produced plasmas, the possibility of reproducing and detecting shock acceleration in controlled laboratory experiments should be considered. The various experimental constraints that must be satisfied are reviewed. It is demonstrated that several currently operating laser facilities may fulfil the necessary criteria to confirm the occurrence of diffusive shock acceleration of electrons at laser produced shocks. Successful reproduction of Fermi acceleration in the laboratory could open a range of possibilities, providing insight into the complex plasma processes that occur near astrophysical sources of cosmic rays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that the diffusion approximation breaks down for particle acceleration at oblique shocks with velocities typical of young supernova remnants. Higher order anisotropies flatten the spectral index at quasi-parallel shocks and steepen the spectral index at quasi-perpendicular shocks. We compare the theory with observed spectral indices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particle-in-cell (PIC) simulations of relativistic shocks are in principle capable of predicting the spectra of photons that are radiated incoherently by the accelerated particles. The most direct method evaluates the spectrum using the fields given by the Lienard-Wiechart potentials. However, for relativistic particles this procedure is computationally expensive. Here we present an alternative method that uses the concept of the photon formation length. The algorithm is suitable for evaluating spectra both from particles moving in a specific realization of a turbulent electromagnetic field or from trajectories given as a finite, discrete time series by a PIC simulation. The main advantage of the method is that it identifies the intrinsic spectral features and filters out those that are artifacts of the limited time resolution and finite duration of input trajectories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particle-in-cell simulations of relativistic, weakly magnetized collisionless shocks show that particles can gain energy by repeatedly crossing the shock front. This requires scattering off self-generated small length-scale magnetic fluctuations. The radiative signature of this first-order Fermi acceleration mechanism is important for models of both the prompt and afterglow emission in gamma-ray bursts and depends on the strength parameter a = lambda e/delta B/mc(2) of the fluctuations (lambda is the length scale and vertical bar delta B vertical bar is the magnitude of the fluctuations). For electrons (and positrons), acceleration saturates when the radiative losses produced by the scattering cannot be compensated by the energy gained on crossing the shock. We show that this sets an upper limit on both the electron Lorentz factor gamma <10(6) (n/1 cm(-3))(-1/6)(-1/6) and on the energy of the photons radiated during the scattering process h omega(max) <40Max(a, 1)(n/1 cm(-3))(1/6)(-1/6) eV, where n is the number density of the plasma and (gamma) over bar is the thermal Lorentz factor of the downstream plasma, provided a <a(crit) similar to 10(6). This rules out "jitter" radiation on self-excited fluctuations with a <I as a source of gamma rays, although high-energy photons might still be produced when the jitter photons are upscattered in an analog of the synchrotron self-Compton process. In fluctuations with a > 1, radiation is generated by the standard synchrotron mechanism, and the maximum photon energy rises linearly with a, until saturating at 70 MeV, when a = a(crit).