330 resultados para Rat tail artery
Resumo:
Activity of the immediate early gene c-fos was compared across hemispheres in rats with unilateral anterior thalamic lesions. Fos protein was quantified after rats performed a spatial working memory test in the radial-arm maze, a task that is sensitive to bilateral lesions of the anterior thalamic nuclei. Unilateral anterior thalamic lesions produced evidence of a widespread hippocampal hypoactivity, as there were significant reductions in Fos counts in a range of regions within the ipsilateral hippocampal formation (rostral CA1, rostral dentate gyrus, 'dorsal' hippocampus, presubiculum and postsubiculum). A decrease in Fos levels was also found in the rostral and caudal retrosplenial cortex but not in the parahippocampal cortices or anterior cingulate cortices. The Fos changes seem most closely linked to sites that are also required for successful task performance, supporting the notion that the anterior thalamus, retrosplenial cortex and hippocampus form key components of an interdependent neuronal network involved in spatial mnemonic processing.
Resumo:
Possible interactions between different intracellular Ca(2+) release channels were studied in isolated rat gastric myocytes using agonist-evoked Ca(2+) signals. Spontaneous, local Ca(2+) transients were observed in fluo-4-loaded cells with linescan confocal imaging. These were blocked by ryanodine (100 microM) but not by the inositol 1,4,5-trisphosphate receptor (IP(3)R) blocker, 2-aminoethoxydiphenyl borate (100 microM), identifying them as Ca(2+) sparks. Caffeine (10 mM) and carbachol (10 microM) initiated Ca(2+) release at sites which co-localized with each other and with any Ca(2+) spark sites. In fura-2-loaded cells extracellular 2-aminoethoxydiphenyl borate and intracellular heparin (5 mg ml(-1)) both inhibited the global cytoplasmic [Ca(2+)] transient evoked by carbachol, confirming that it was IP(3)R-dependent. 2-Aminoethoxydiphenyl borate and heparin also increased the response to caffeine. This probably reflected an increased Ca(2+) store content since 2-aminoethoxydiphenyl borate more than doubled the amplitude of transients evoked by ionomycin. Ryanodine completely abolished carbachol and caffeine responses but only reduced ionomycin transients by 30 %, suggesting that blockade of carbachol transients by ryanodine was not simply due to store depletion. Double labelling of IP(3)Rs and RyRs demonstrated extensive overlap in their distribution. These results suggest that carbachol stimulates Ca(2+) release through co-operation between IP(3)Rs and RyRs, and implicate IP(3)Rs in the regulation of Ca(2+) store content.