66 resultados para RADIOCARBON AGE CALIBRATION
Resumo:
Ten medieval permanent teeth were subjected to incremental dentine sectioning and stable isotope analysis to investigate dietary changes in high resolution. In addition to this, eight increments were also selected for 14C measurements to examine possible intra-individual age differences. Results reveal the cessation of weaning, various dietary profiles and in some cases significantly different 14C ages obtained from a single tooth. This case study illustrates how 14C measurements can function as a proxy alongside the commonly used carbon and nitrogen stable isotope values to interpret the diet of past individuals
Resumo:
Freshwater reservoir effects (FRE) can cause a major problem with radiocarbon dating human skeletal material in the Eurasian steppe. We present the first results of research into the extent of the FRE in the sites of Borly 4 (Eneolithic), and Shauke 1 and 8b (Early Bronze Age), North-Eastern Kazakhstan. AMS 14C dating and stable isotope (δ13C, δ15N) analysis of associated groups of samples (32 samples, 11 groups in total) demonstrate that: a) the diet of the humans and fauna analysed was based on the C3 foodchain with no evidence of a C4 plant (such as millet) contribution; aquatic resources apparently were a continuous dietary feature for the humans; b) the first 14C dates obtained for the Upper and Middle Irtysh River region attribute the Eneolithic period of the area to the 34th-30th c. BC, and the Early Bronze Age – to the 25th-20th c. BC; there is a ca. 450 years hiatus between the two periods; c) the maximum fish-herbivore freshwater reservoir offset observed equals 301±47 14C yrs. As such, 14C dates from aquatic and human samples from the area need to be interpreted with caution as they are likely to be affected by the offset (i.e. appear older).
The paper also discusses the effect of a sodium hydroxide (NaOH) wash on δ13C, δ15N, C:Natomic levels and collagen yields of the bone samples. Our results indicate a minor but significant effect of NaOH treatment only on C:Natomic ratios of the samples.
Resumo:
Fifteen samples of burnt olive pits discovered inside a jar in the destruction layer of the Iron Age city of Khirbet Qeiyafa were analyzed by accelerator mass spectrometry (AMS) radiocarbon dating. Of these, four were halved and sent to two different laboratories to minimize laboratory bias. The dating of these samples is ~1000 BC. Khirbet Qeiyafa is currently the earliest known example of a fortified city in the Kingdom of Judah and contributes direct evidence to the heated debate on the biblical narrative relating to King David. Was he the real historical ruler of an urbanized state-level society in the early 10th century BC or was this level of social development reached only at the end of the 8th century BC? We can conclude that there were indeed fortified centers in the Davidic kingdom from the studies presented. In addition, the dating of Khirbet Qeiyafa has far-reaching implications for the entire Levant. The discovery of Cypriot pottery at the site connects the 14C datings to Cyprus and the renewal of maritime trade between the island and the mainland in the Iron Age. A stone temple model from Khirbet Qeiyafa, decorated with triglyphs and a recessed doorframe, points to an early date for the development of this typical royal architecture of the Iron Age Levant.
Resumo:
The North Atlantic has played a key role in abrupt climate changes due to the sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to the location and strength of deep water formation. It is crucial for modelling future climate change to understand the role of the AMOC in the rapid warming and gradual cooling cycles known as Dansgaard-Oescher (DO) events which are recorded in the Greenland ice cores. However, palaeoceanographic research into DO events has been hampered by the uncertainty in timing due largely to the lack of a precise chronological time frame for marine records. While tephrochronology provides links to the Greenland ice core records at a few points, radiocarbon remains the primary dating method for most marine cores. Due to variations in the atmospheric and oceanic 14C concentration, radiocarbon ages must be calibrated to provide calendric ages. The IntCal Working Group provides a global estimate of ocean 14C ages for calibration of marine radiocarbon dates, but the variability of the surface marine reservoir age in the North Atlantic particularly during Heinrich or DO events, makes calibration uncertain. In addition, the current Marine09 radiocarbon calibration beyond around 15 ka BP is largely based on 'tuning' to the Hulu Cave isotope record, so that the timing of events may not be entirely synchronous with the Greenland ice cores. The use of event-stratigraphy and independent chronological markers such as tephra provide the scope to improve marine radiocarbon reservoir age estimates particularly in the North Atlantic where a number of tephra horizons have been identified in both marine sediments and the Greenland ice cores. Quantification of timescale uncertainties is critical but statistical techniques which can take into account the differential dating between events can improve the precision. Such techniques should make it possible to develop specific marine calibration curves for selected regions.
Resumo:
This paper presents a new series of AMS dates on ultrafiltered bone gelatin extracted from identified cutmarked or humanly-modified bones and teeth from the site of Abri Pataud, in the French Dordogne. The sequence of 32 new determinations provides a coherent and reliable chronology from the site's early Upper Palaeolithic levels 5-14, excavated by Hallam Movius. The results show that there were some problems with the previous series of dates, with many underestimating the real age. The new results, when calibrated and modelled using a Bayesian statistical method, allow detailed understanding of the pace of cultural changes within the Aurignacian I and II levels of the site, something not achievable before. In the future, the sequence of dates will allow wider comparison to similarly dated contexts elsewhere in Europe. High precision dating is only possible by using large suites of AMS dates from humanly-modified material within well understood archaeological sequences modelled using a Bayesian statistical method. © 2011.
Resumo:
The newly updated inventory of palaeoecological research in Latin America offers an important overview of sites available for multi-proxy and multi-site purposes. From the collected literature supporting this inventory, we collected all available age model metadata to create a chronological database of 5116 control points (e.g. 14C, tephra, fission track, OSL, 210Pb) from 1097 pollen records. Based on this literature review, we present a summary of chronological dating and reporting in the Neotropics. Difficulties and recommendations for chronology reporting are discussed. Furthermore, for 234 pollen records in northwest South America, a classification system for age uncertainties is implemented based on chronologies generated with updated calibration curves. With these outcomes age models are produced for those sites without an existing chronology, alternative age models are provided for researchers interested in comparing the effects of different calibration curves and age–depth modelling software, and the importance of uncertainty assessments of chronologies is highlighted. Sample resolution and temporal uncertainty of ages are discussed for different time windows, focusing on events relevant for research on centennial- to millennial-scale climate variability. All age models and developed R scripts are publicly available through figshare, including a manual to use the scripts.