135 resultados para Premature infants.
Resumo:
Background: Several studies have shown an increased incidence of neurodevelopmental impairment in very preterm survivors at school age compared with controls.
Aim: To compare findings in the same cohort at 8 years and 15 years.
Methods: A total of 151 of the 224 eligible infants born before 33 weeks of gestation from 1979 to 1982, and who were living in the UK, were assessed at 8 and 15 years. Items common to both assessments were compared to evaluate changes in neurodevelopmental function. The assessment included a structured neurological examination, psychometric tests using the WISC-R (in subjects born in 1981-82), a test of visuomotor integration (Beery), and a school questionnaire.
Results: There was a significant increase in the proportion of subjects classified as impaired with disability from 11% at 8 to 22% at 14-15 years of age. The proportion of subjects classified as impaired without disability increased from 16% at 8 to 26% at 14-15 years of age. Full scale IQ decreased from 104 to 95 from childhood to adolescence, and more adolescents (24%) were requiring extra educational provision than they had at the age of 8 years (15%).
Conclusion: Results indicate that between the ages of 8 and 15 years in this cohort of very preterm survivors there is an apparent deterioration in neurodevelopmental outcome category, cognitive function, and extra educational support. It is not clear whether this represents a genuine deterioration in neurocognitive function or whether it represents the expression of pre-existing cerebral pathology in an increasingly complex environment.
Resumo:
Background: Neurodevelopmental and behavioural problems have been repeatedly reported in very preterm. survivors, often showing themselves later in childhood as poor school performance. Early identification of problems would mean that appropriate remedial therapy can be implemented. We have previously shown that neurodevelopmental status at 1 year was predictive of outcome at 8 years in a cohort of preterm. infants. The aim of this paper was to see if neurodevelopmental outcome in adolescence could be predicted by assessment by 1 year in the same cohort of pretem infants. Study design: Prospective cohort study. Subjects: 150 adolescents, born before 33 weeks gestation. Outcome measures: Neurological examination, developmental quotient, vision and hearing by 1 year. At 14-15 years, neurological examination, school performance questionnaire, Schonnell test of reading age, a premorbid adjustment score, Rutter behavioural score and for those born from 1981, cognitive tests (WISC-R). Results: A highly significant relationship existed between neurological status by 1 year and the need for extra educational provision, overall neurodevelopmental status, cognitive function in those that had their IQs measured and premorbid adjustment score of prepsychotic symptoms in adolescence. However, status at 1 year was not predictive of adolescent reading age or behavioural score. Conclusions: Neurodevelopmental assessment at 1 year ispredictive of school performance and outcome in the adolescent period. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Background Growth faltering in West African children has previously been associated with dietary exposure to aflatoxins, particularly upon weaning. However, in animal studies in utero exposure to low levels of aflatoxin also results in growth faltering.
Objective This study investigated the effect of in utero aflatoxin exposure on infant growth in the first year of life in The Gambia.
Methods Height and weight were measured for 138 infants at birth and at regular monthly intervals for one year. Aflatoxin-albumin (AF-alb) adduct level was measured in maternal blood during pregnancy, in cord blood and in infants at age 16 weeks.
Results The geometric mean AF-alb levels were 40.4pg/mg (range 4.82-60.8pg/mg), 10.1pg/mg (range 5.01-89.6pg/mg) and 8.7pg/mg (range 5.0-30.2pg/mg) in maternal, cord and infant blood, respectively. AF-alb in maternal blood was a strong predictor of both weight (P = 0.012) and height (P = 0.044) gain, with lower gain in those with higher exposure. A reduction of maternal AF-alb from 110pg/mg to 10pg/mg would lead to a 0.8kg increase in weight and 2cm increase in height within the first year of life.
Conclusions This study shows a strong effect of maternal aflatoxin exposure during pregnancy on growth in the first year of life and thus extends earlier observations of an association between aflatoxin exposure during infancy and growth faltering. The findings imply value in targeting intervention strategies at early life exposures.
Resumo:
OBJECTIVES:: Preterm infants undergo frequent painful procedures in the neonatal intensive care unit. Electroencephalography (EEG) changes in reaction to invasive procedures have been reported in preterm and full-term neonates. Frontal EEG asymmetry as an index of emotion during tactile stimulation shows inconsistent findings in full-term infants, and has not been examined in the context of pain in preterm infants. Our aim was to examine whether heel lance for blood collection induces changes in right-left frontal asymmetry, suggesting negative emotional response, in preterm neonates at different gestational age (GA) at birth and different duration of stay in the neonatal intensive care unit. MATERIALS AND METHODS:: Three groups of preterm infants were compared: set 1: group 1 (n=24), born and tested at 28 weeks GA; group 2 (n=22), born at 28 weeks GA and tested at 33 weeks; set 2: group 3 (n=25), born and tested at 33 weeks GA. EEG power was calculated for 30-second artifact-free periods, in standard frequency bandwidths, in 3 phases (baseline, up to 5 min after heel lance, 10 min after heel lance). RESULTS:: No significant differences were found in right-left frontal asymmetry, or in ipsilateral or contralateral somatosensory response, across phases. In contrast, the Behavioral Indicators of Infant Pain scores changed across phase (P
Resumo:
Procedural pain is associated with poorer neurodevelopment in infants born very preterm (= 32 weeks gestational age), however, the etiology is unclear. Animal studies have demonstrated that early environmental stress leads to slower postnatal growth; however, it is unknown whether neonatal pain-related stress affects postnatal growth in infants born very preterm. The aim of this study was to examine whether greater neonatal pain (number of skin-breaking procedures adjusted for medical confounders) is related to decreased postnatal growth (weight and head circumference [HC] percentiles) early in life and at term-equivalent age in infants born very preterm. Participants were n=78 preterm infants born = 32 weeks gestational age, followed prospectively since birth. Infants were weighed and HC measured at birth, early in life (median: 32 weeks [interquartile range 30.7-33.6]) and at term-equivalent age (40 weeks [interquartile range 38.6-42.6]). Weight and HC percentiles were computed from sex-specific British Columbia population-based data. Greater neonatal pain predicted lower body weight (Wald ?(2)=7.36, P=0.01) and HC (Wald ?(2)=4.36, P=0.04) percentiles at 32 weeks postconceptional age, after adjusting for birth weight percentile and postnatal risk factors of illness severity, duration of mechanical ventilation, infection, and morphine and corticosteroid exposure. However, later neonatal infection predicted lower weight percentile at term (Wald ?(2)=5.09, P=0.02). Infants born very preterm undergo repetitive procedural pain during a period of physiological immaturity that appears to impact postnatal growth, and may activate a downstream cascade of stress signaling that affects later growth in the neonatal intensive care unit.
Resumo:
The majority of children who are born very preterm escape major impairment, yet more subtle cognitive and attention problems are very common in this population. Previous research has linked infant focused attention during exploratory play to later cognition in children born full-term and preterm. Infant focused attention can be indexed by sustained decreases in heart rate (HR). However there are no preterm studies that have jointly examined infant behavioral attention and concurrent HR response during exploratory play in relation to developing cognition. We recruited preterm infants free from neonatal conditions associated with major adverse outcomes, and further excluded infants with developmental delay (Bayley Mental Development Index [MDI?
Resumo:
To determine whether a single course of antenatal dexamethasone alters resting cortisol at 3, 8 and 18 months corrected age in preterm infants.
Resumo:
Preterm infants in the neonatal intensive care unit undergo repeated exposure to procedural and ongoing pain. Early and long-term changes in pain processing, stress-response systems and development may result from cumulative early pain exposure. So that appropriate treatment can be given, accurate assessment of pain is vital, but is also complex because these infants' responses may differ from those of full-term infants. A variety of uni- and multidimensional assessment tools are available; however, many have incomplete psychometric testing and may not incorporate developmentally important cues. Near-infrared spectroscopy and/or EEG techniques that measure neonatal pain responses at a cortical level offer new opportunities to validate neonatal pain assessment tools.
Resumo:
To evaluate the mortality and long-term morbidity rates of extremely low birth weight (ELBW) infants admitted to neonatal intensive care units (NICUs).
Resumo:
Pain response may be altered in infants born very preterm owing to repeated exposure to procedures in the neonatal intensive care unit. Findings have been inconsistent in studies of behavioral and cardiac responses to brief pain in preterm versus full-term infants following neonatal intensive care unit discharge. To our knowledge, cortisol reactivity to pain has not been compared in preterm and full-term infants. We examined pain reactivity to immunization in preterm and full-term infants.
Resumo:
Preterm and critically ill newborns admitted to a NICU undergo repeated skin-breaking procedures that are necessary for their survival. Sucrose is rapidly becoming the accepted clinical standard nonpharmacologic intervention for managing acute procedural pain for these infants. Although shown to be safe in single doses, only 4 studies have evaluated the effects of repeated doses of sucrose over relatively short periods of time. None has examined the use of sucrose throughout the NICU stay, and only 1 study evaluated the neurodevelopmental outcomes after repeated doses of sucrose. In that study, infants born at 10 doses per day in the first week of life were more likely to show poorer attention and motor development in the early months after discharge from the NICU. Results of studies in animal models have suggested that the mechanism of action of sucrose is through opioid pathways; however, in human infants, little has been done to examine the physiologic mechanisms involved, and the findings reported thus far have been ambiguous. Drawing from the growing animal literature of research that has examined the effects of chronic sugar exposure, we describe alternative amine and hormone pathways that are common to the processing of sucrose, attention, and motor development. In addition, a review of the latest research to examine the effects of repeated sucrose on pain processing is presented. These 2 literatures each can inform the other and can provide an impetus to initiate research to examine not only the mechanisms involved in the calming mechanisms of sucrose but also in the long-term neurodevelopmental effects of repeated sucrose in those infants born extremely preterm or critically ill.
Resumo:
To evaluate the impact of early brain injury and neonatal illness on corticospinal tract (CST) development in premature newborns serially studied with diffusion tensor tractography.
Resumo:
We examined the role of physiological regulation (heart rate, vagal tone, and salivary cortisol) in short-term memory in preterm and full-term 6-month-old infants. Using a deferred imitation task to evaluate social learning and memory recall, an experimenter modeled three novel behaviors (removing, shaking, and replacing a glove) on a puppet. Infants were tested immediately after being shown the behaviors as well as following a 10-min delay. We found that greater suppression of vagal tone was related to better memory recall in full-term infants tested immediately after the demonstration as well as in preterm infants tested later after a 10-min delay. We also found that preterm infants showed greater coordination of physiology (i.e., tighter coupling of vagal tone, heart rate, and cortisol) at rest and during retrieval than full-term infants. These findings provide new evidence of the important links between changes in autonomic activity and memory recall in infancy. They also raise the intriguing possibility that social learning, imitation behavior, and the formation of new memories are modulated by autonomic activity that is coordinated differently in preterm and full-term infants.
Resumo:
Procedural pain in the neonatal intensive care unit triggers a cascade of physiological, behavioral and hormonal disruptions which may contribute to altered neurodevelopment in infants born very preterm, who undergo prolonged hospitalization at a time of physiological immaturity and rapid brain development. The aim of this study was to examine relationships between cumulative procedural pain (number of skin-breaking procedures from birth to term, adjusted for early illness severity and overall intravenous morphine exposure), and later cognitive, motor abilities and behavior in very preterm infants at 8 and 18 months corrected chronological age (CCA), and further, to evaluate the extent to which parenting factors modulate these relationships over time. Participants were N=211 infants (n=137 born preterm 32 weeks gestational age [GA] and n=74 full-term controls) followed prospectively since birth. Infants with significant neonatal brain injury (periventricular leucomalacia, grade 3 or 4 intraventricular hemorrhage) and/or major sensori-neural impairments, were excluded. Poorer cognition and motor function were associated with higher number of skin-breaking procedures, independent of early illness severity, overall intravenous morphine, and exposure to postnatal steroids. The number of skin-breaking procedures as a marker of neonatal pain was closely related to days on mechanical ventilation. In general, greater overall exposure to intravenous morphine was associated with poorer motor development at 8 months, but not at 18 months CCA, however, specific protocols for morphine administration were not evaluated. Lower parenting stress modulated effects of neonatal pain, only on cognitive outcome at 18 months.
Resumo:
Learning difficulties in preterm infants are thought to reflect impairment in arousal regulation. We examined relationships among gestational age, learning speed, and behavioral and physiological reactivity in 55 preterm and 49 full-term infants during baseline, contingency, and nonreinforcement phases of a conjugate mobile paradigm at 3 months corrected age. For all infants, negative affect, looking duration, and heart rate levels increased during contingency and nonreinforcement phases, whereas respiratory sinus arrhythmia (RSA, an index of parasympathetic activity) decreased and cortisol did not change. Learners showed greater RSA suppression and less negative affect than nonlearners. This pattern was particularly evident in the preterm group. Overall, preterm infants showed less learning, spent less time looking at the mobile, and had lower cortisol levels than full-term infants. Preterm infants also showed greater heart rate responses to contingency and dampened heart rate responses to nonreinforcement compared to full-term infants. Findings underscore differences in basal and reactivity measures in preterm compared to full-term infants and suggest that the capacity to regulate parasympathetic activity during a challenge enhances learning in preterm infants.