95 resultados para Pharmacology


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone with therapeutic potential for type 2 diabetes due to its insulin-releasing and antihyperglycaemic actions. However, development of GIP-based therapies is limited by N-terminal degradation by DPP IV resulting in a very short circulating half-life. Numerous GIP analogues have now been generated exhibiting DPP IV resistance and extended bioactivity profiles. In this study, we report a direct comparison of the long-term antidiabetic actions of three such GIP molecules, N-AcGIP, GIP(LyS(37)PAL) and N-AcGIP(LyS(37)PAL) in obese diabetic (ob/ob) mice. An extended duration of action of each GIP analogue was demonstrated prior to examining the effects of once daily injections (25 nmol kg(-1) body weight) over a 14-day period. Administration of either N-AcGIP, GIP(LyS(37)PAL) or N-AcGIP(LyS37PAL) significantly decreased non-fasting plasma glucose and improved glucose tolerance compared to saline treated controls. All three analogues significantly enhanced glucose and nutrient-induced insulin release, and improved insulin sensitivity. The metabolic and insulin secretory responses to native GIP were also enhanced in 14-day analogue treated mice, revealing no evidence of GIP-receptor desensitization. These effects were accompanied by significantly enhanced pancreatic insulin following N-AcGIP(Lys(37)PAL) and increased islet number and islet size in all three groups. Body weight, food intake and circulating glucagon were unchanged. These data demonstrate the therapeutic potential of once daily injection of enzyme resistant GIP analogues and indicate that N-AcGIP is equally as effective as related palmitate derivatised analogues of GIP. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone with a potentially therapeutic role in type 2 diabetes. Rapid degradation by dipeptidylpeptidase IV has prompted the development of enzyme-resistant N-terminally modified analogs, but renal clearance still limits in vivo bioactivity. In this study, we report long-term antidiabetic effects of a novel, N-terminally protected, fatty acid-derivatized analog of GIP, N-AcGIP(LysPAL(37)), in obese diabetic (ob/ob) mice. Once-daily injections of N-AcGIP(LysPAL(37)) over a 14-day period significantly decreased plasma glucose, glycated hemoglobin, and improved glucose tolerance compared with ob/ob mice treated with saline or native GIP. Plasma insulin and pancreatic insulin content were significantly increased by N-AcGIP(LysPAL(37)). This was accompanied by a significant enhancement in the insulin response to glucose together with a notable improvement of insulin sensitivity. No evidence was found for GIP receptor desensitization and the metabolic effects of NAcGIP(LysPAL(37)) were independent of any change in feeding or body weight. Similar daily injections of native GIP did not affect any of the parameters measured. These data demonstrate the ability of once-daily injections of N-terminally modified, fatty acid-derivatized analogs of GIP, such as N-AcGIP(LysPAL(37)), to improve diabetes control and to offer a new class of agents for the treatment of type 2 diabetes.