103 resultados para PROBABILITY REPRESENTATION
Resumo:
Human action recognition is an important problem in computer vision, which has been applied to many applications. However, how to learn an accurate and discriminative representation of videos based on the features extracted from videos still remains to be a challenging problem. In this paper, we propose a novel method named low-rank representation based action recognition to recognize human actions. Given a dictionary, low-rank representation aims at finding the lowestrank representation of all data, which can capture the global data structures. According to its characteristics, low-rank representation is robust against noises. Experimental results demonstrate the effectiveness of the proposed approach on several publicly available datasets.
Resumo:
Directional Modulation (DM) is a recently proposed technique for securing wireless communication. In this paper we point out that modulation-directionality is a consequence of varying the beamforming network, either in baseband or in the RF stage, at the information rate In order to formalize and extend on previous analysis and synthesis methods a new theoretical treatment using vector representations of directional modulation (DM) systems is introduced and used to obtain the necessary and sufficient con
Resumo:
The scale of BT's operations necessitates the use of very large scale computing systems, and the storage and management of large volumes of data. Customer product portfolios are an important form of data which can be difficult to store in a space efficient way. The difficulties arise from the inherently structured form of product portfolios, and the fact that they change over time as customers add or remove products. This paper introduces a new data-modelling abstraction called the List_Tree. It has been designed specifically to support the efficient storage and manipulation of customer product portfolios, but may also prove useful in other applications with similar general requirements.