69 resultados para POWER OUTPUT


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recently introduced Class-EF power amplifier (PA) has a peak switch voltage lower than that of the Class-E PA. However, the value of the transistor output capacitance at high frequencies is typically larger than the required Class-EF optimum shunt capacitance. Consequently, soft-switching operation that minimizes power dissipation during off-to-on transition cannot be achieved at high frequencies. Two new Class-EF PA variants with transmission-line load networks, namely, third-harmonic-peaking (THP) and fifth-harmonic-peaking (FHP) Class-EF PAs are proposed in this paper. These permit operation at higher frequencies at no expense to other PA figures of merit. Analytical expressions are derived in order to obtain circuit component values, which satisfy the required Class-EF impedances at fundamental frequency, all even harmonics, and the first few odd harmonics as well as simultaneously providing impedance matching to a 50- Ω load. Furthermore, a novel open-circuit and shorted stub arrangement, which has substantial practical benefits, is proposed to replace the normal quarter-wave line connected at the transistor's drain. Using GaN HEMTs, two PA prototypes were built. Measured peak drain efficiency of 91% and output power of 39.5 dBm were obtained at 2.22 GHz for the THP Class-EF PA. The FHP Class-EF PA delivered output power of 41.9 dBm with 85% drain efficiency at 1.52 GHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas fired generation currently plays an integral support role ensuring security of supply in power systems with high wind power penetrations due to its technical and economic attributes. However, the increase in variable wind power has affected the gas generation output profile and is pushing the boundaries of the design and operating envelope of gas infrastructure. This paper investigates the mutual dependence and interaction between electricity generation and gas systems through the first comprehensive joined-up, multi-vector energy system analysis for Ireland. Key findings reveal the high vulnerability of the Irish power system to outages on the Irish gas system. It has been shown that the economic operation of the power system can be severely impacted by gas infrastructure outages, resulting in an average system marginal price of up to €167/MWh from €67/MWh in the base case. It has also been shown that gas infrastructure outages pose problems for the location of power system reserve provision, with a 150% increase in provision across a power system transmission bottleneck. Wind forecast error was shown to be a significant cause for concern, resulting in large swings in gas demand requiring key gas infrastructure to operate at close to 100% capacity. These findings are thought to increase in prominence as the installation of wind capacity increases towards 2020, placing further stress on both power and gas systems to maintain security of supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficiency of generation plants is an important measure for evaluating the operating performance. The objective of this paper is to evaluate electricity power generation by conducting an All-Island-Generator-Efficiency-Study (AIGES) for the Republic of Ireland and Northern Ireland by utilising a Data Envelopment Analysis (DEA) approach. An operational performance efficiency index is defined and pursued for the year 2008. The economic activities of electricity generation units/plants examined in this paper are characterized by numerous input and output indicators. Constant returns to scale (CRS) and variable returns to scale (VRS) type DEA models are employed in the analysis. Also a slacks based analysis indicates the level of inefficiency for each variable examined. The findings from this study provide a general ranking and evaluation but also facilitate various interesting efficiency comparisons between generators by fuel type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new variant of broadband Doherty power amplifier that employs a novel output combiner. A new parameter ∝ is introduced to permit a generalized analysis of the recently reported Parallel Doherty power amplifier (PDPA),and hence offer design flexibility. The circuit prototype of the new DPA fabricated using GaN devices exhibits maximum drain efficiency of 85% at 43-dBm peak power and 63% at 6-dB backoff power (BOP). Measured drain efficiency of >60% at peak power across 500-MHz frequency range and >50% at 6-dB BOP across 480-MHz frequency range were achieved, confirming the  theoretical wideband characteristics of the new DPA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of 5G enabling technologies brings new challenges to the design of power amplifiers (PAs). In particular, there is a strong demand for low-cost, nonlinear PAs which, however, introduce nonlinear distortions. On the other hand, contemporary expensive PAs show great power efficiency in their nonlinear region. Inspired by this trade-off between nonlinearity distortions and efficiency, finding an optimal operating point is highly desirable. Hence, it is first necessary to fully understand how and how much the performance of multiple-input multiple-output (MIMO) systems deteriorates with PA nonlinearities. In this paper, we first reduce the ergodic achievable rate (EAR) optimization from a power allocation to a power control problem with only one optimization variable, i.e. total input power. Then, we develop a closed-form expression for the EAR, where this variable is fixed. Since this expression is intractable for further analysis, two simple lower bounds and one upper bound are proposed. These bounds enable us to find the best input power and approach the channel capacity. Finally, our simulation results evaluate the EAR of MIMO channels in the presence of nonlinearities. An important observation is that the MIMO performance can be significantly degraded if we utilize the whole power budget.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the achievable sum-rate of massive multiple-input multiple-output (MIMO) systems in the presence of channel aging. For the uplink, by assuming that the base station (BS) deploys maximum ratio combining (MRC) or zero-forcing (ZF) receivers, we present tight closed-form lower bounds on the achievable sum-rate for both receivers with aged channel state information (CSI). In addition, the benefit of implementing channel prediction methods on the sum-rate is examined, and closed-form sum rate lower bounds are derived. Moreover, the impact of channel aging and channel prediction on the power scaling law is characterized. Extension to the downlink scenario and multi-cell scenario are also considered. It is found that, for a system with/without channel prediction, the transmit power of each user can be scaled down at most by 1= p M (where M is the number of BS antennas), which indicates that aged CSI does not degrade the power scaling law, and channel prediction does not enhance the power scaling law; instead, these phenomena affect the achievable sum-rate by degrading or enhancing the effective signal to interference and noise ratio, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As cryptographic implementations are increasingly subsumed as functional blocks within larger systems on chip, it becomes more difficult to identify the power consumption signatures of cryptographic operations amongst other unrelated processing activities. In addition, at higher clock frequencies, the current decay between successive processing rounds is only partial, making it more difficult to apply existing pattern matching techniques in side-channel analysis. We show however, through the use of a phase-sensitive detector, that power traces can be pre-processed to generate a filtered output which exhibits an enhanced round pattern, enabling the identification of locations on a device where encryption operations are occurring and also assisting with the re-alignment of power traces for side-channel attacks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study introduces an inexact, but ultra-low power, computing architecture devoted to the embedded analysis of bio-signals. The platform operates at extremely low voltage supply levels to minimise energy consumption. In this scenario, the reliability of static RAM (SRAM) memories cannot be guaranteed when using conventional 6-transistor implementations. While error correction codes and dedicated SRAM implementations can ensure correct operations in this near-threshold regime, they incur in significant area and energy overheads, and should therefore be employed judiciously. Herein, the authors propose a novel scheme to design inexact computing architectures that selectively protects memory regions based on their significance, i.e. their impact on the end-to-end quality of service, as dictated by the bio-signal application characteristics. The authors illustrate their scheme on an industrial benchmark application performing the power spectrum analysis of electrocardiograms. Experimental evidence showcases that a significance-based memory protection approach leads to a small degradation in the output quality with respect to an exact implementation, while resulting in substantial energy gains, both in the memory and the processing subsystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wearable devices performing advanced bio-signal analysis algorithms are aimed to foster a revolution in healthcare provision of chronic cardiac diseases. In this context, energy efficiency is of paramount importance, as long-term monitoring must be ensured while relying on a tiny power source. Operating at a scaled supply voltage, just above the threshold voltage, effectively helps in saving substantial energy, but it makes circuits, and especially memories, more prone to errors, threatening the correct execution of algorithms. The use of error detection and correction codes may help to protect the entire memory content, however it incurs in large area and energy overheads which may not be compatible with the tight energy budgets of wearable systems. To cope with this challenge, in this paper we propose to limit the overhead of traditional schemes by selectively detecting and correcting errors only in data highly impacting the end-to-end quality of service of ultra-low power wearable electrocardiogram (ECG) devices. This partition adopts the protection of either significant words or significant bits of each data element, according to the application characteristics (statistical properties of the data in the application buffers), and its impact in determining the output. The proposed heterogeneous error protection scheme in real ECG signals allows substantial energy savings (11% in wearable devices) compared to state-of-the-art approaches, like ECC, in which the whole memory is protected against errors. At the same time, it also results in negligible output quality degradation in the evaluated power spectrum analysis application of ECG signals.