152 resultados para POLAR-MOLECULES


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The palladium-catalyzed copolymerization of styrene and CO in an ionic liquid solvent, 1-hexylpyridinium bis(trifluoromethanesulfonyl) imide, gave improved yields and increased molecular weights compared to polymerizations run in methanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hi-fi mapping: Multiplexing fluorescent sensors that simultaneously target proton concentration and polarity move to micellar nanospaces, self-regulate their positions, and report their pKa values and wavelengths, which are controlled by their local environments. Such sensory functions enable maps of proton gradients near micellar membranes to be drawn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The applicability of the Watson Hamiltonian for the description of nonlinear molecules—especially triatomic ones—has always been questioned, as the Jacobian of the transformation that leads to the Watson Hamiltonian, vanishes at the linear configuration. This results in singular behavior of the Watson Hamiltonian, giving rise to serious numerical problems in the computation of vibrational spectra, with unphysical, spurious vibrational states appearing among the physical vibrations, especially in the region of highly excited states. In this work, we analyze the problem and propose a simple way to confine the nuclear wavefunction in such a way that the spurious solutions are eliminated. We study the water molecule and observe an improvement compared with previous results. We also apply the method to the van der Walls molecule XeHe2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyse the process of rapid positron annihilation in large polyatomic molecules due to positron capture into vibrational Feshbach resonances. Resonant annihilation occurs in molecules which can bind positrons, and we analyse positron binding to alkanes using zero-range potentials. Related questions of spectra of annihilation gamma quanta and molecular fragmentation following annihilation, are discussed briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a review of low-energy positron interactions with atoms and molecules. Processes of interest include elastic scattering, electronic and vibrational excitation, ionization, positronium formation and annihilation. An overview is presented of the currently available theoretical and experimental techniques to study these phenomena, including the use of trap-based positron beam sources to study collision processes with improved energy resolution. State-resolved measurements of electronic and vibrational excitation cross sections and measurement of annihilation rates in atoms and molecules as a function of incident positron energy are discussed. Where data are available, comparisons are made with analogous electron scattering cross sections. Resonance phenomena, common in electron scattering, appear to be less common in positron scattering. Possible exceptions include the sharp onsets of positron-impact electronic and vibrational excitation of selected molecules. Recent energy-resolved studies of positron annihilation in hydrocarbons containing more than a few carbon atoms provide direct evidence that vibrational Feshbach resonances underpin the anomalously large annihilation rates observed for many polyatomic species. We discuss open questions regarding this process in larger molecules, as well as positron annihilation in smaller molecules where the theoretical picture is less clear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we use a zero-range potential (ZRP) method to model positron interaction with molecules. This allows us to investigate the e?ect of molecular vibrations on positron–molecule annihilation using the van der Waals dimer Kr2 as an example. We also use the ZRP to explore positron binding to polyatomics and examine the dependence of the binding energy on the size of the molecule for alkanes. We ?nd that a second bound state appears for a molecule with ten carbons, similar to recent experimental evidence for such a state emerging in alkanes with twelve carbons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Positron annihilation rates in many polyatomic molecular gases are anomalously high. Qualitatively, this can be explained by positron capture in vibrational Feshbach resonances, which can occur for molecules with positive positron a?nities [Gribakin, Phys. Rev. A 61 (2000) 022720]. To verify this idea quantitatively, we examine the densities of vibrational excitation spectra of alkanes. To understand the energy dependence of the annihilation rates for alkanes, we propose that positron capture is mediated by vibrational doorway states, in which positron binding is accompanied by the excitation of fundamentals.

Relevância:

20.00% 20.00%

Publicador: