229 resultados para Ondas em plasmas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reductive perturbation technique is employed to investigate the modulational instability of dust-acoustic (DA) waves propagating in a four-component dusty plasma. The dusty plasma consists of both positive- and negative-charge dust grains, characterized by a different mass, temperature and density, in addition to a background of Maxwellian electrons and ions. Relying on a multi-fluid plasma model and employing a multiple scales technique, a nonlinear Schrodinger type equation (NLSE) is obtained for the electric potential amplitude perturbation. The occurrence of localized electrostatic wavepackets is shown, in the form of oscillating structures whose modulated envelope is modelled as a soliton (or multi-soliton) solution of the NLSE. The DA wave characteristics, as well as the associated stability thresholds, are studied analytically and numerically. The relevance of these theoretical results with dusty plasmas observed in cosmic and laboratory environments is analysed in detail, by considering realistic multi-component plasma configurations observed in the polar mesosphere, as well as in laboratory experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The random displacement of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. A two-component (slab/two-dimensional composite) model for the turbulence spectrum is employes. An analytical investigation of the asymptotic behavior of the field-line mean square displacement (FL-MSD) is carried out. It is shown that the magnetic field lines behave superdifusively for every large values of the position variable z, since the FL-MSD sigma varies as sigma similar to z(4/3). An intermediate diffusive regime may also possible exist for finite values of z under conditions which are explicitly determined in terms of the intrinsic turbulent plasma parameters. The superdiffusie asymptotic result is confirmed numerically via an iterative algorithm. The relevance to previous resuslts is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical and numerical investigation is presented of the behavior of a linearly polarized electromagnetic pulse as it propagates through a plasma. Considering a weakly relativistic regime, the system of one-dimensional fluid-Maxwell equations is reduced to a generalized nonlinear Schrodinger type equation, which is solved numerically using a split step Fourier method. The spatio-temporal evolution of an electromagnetic pulse is investigated. The evolution of the envelope amplitude of density harmonics is also studied. An electromagnetic pulse propagating through the plasma tends to broaden due to dispersion, while the nonlinear frequency shift is observed to slow down the pulse at a speed lower than the group velocity. Such nonlinear effects are more important for higher density plasmas. The pulse broadening factor is calculated numerically, and is shown to be related to the background plasma density. In particular, the broadening effect appears to be stronger for dense plasmas. The relation to existing results on electromagnetic pulses in laser plasmas is discussed. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large nonlinear acoustic waves are discussed in a four-component plasma, made up of two superhot isothermal species, and two species with lower thermal velocities, being, respectively, adiabatic and cold. First a model is considered in which the isothermal species are electrons and ions, while the cooler species are positive and/or negative dust. Using a Sagdeev pseudopotential formalism, large dust-acoustic structures have been studied in a systematic way, to delimit the compositional parameter space in which they can be found, without restrictions on the charges and masses of the dust species and their charge signs. Solitary waves can only occur for nonlinear structure velocities smaller than the adiabatic dust thermal velocity, leading to a novel dust-acoustic-like mode based on the interplay between the two dust species. If the cold and adiabatic dust are oppositely charged, only solitary waves exist, having the polarity of the cold dust, their parameter range being limited by infinite compression of the cold dust. However, when the charges of the cold and adiabatic species have the same sign, solitary structures are limited for increasing Mach numbers successively by infinite cold dust compression, by encountering the adiabatic dust sonic point, and by the occurrence of double layers. The latter have, for smaller Mach numbers, the same polarity as the charged dust, but switch at the high Mach number end to the opposite polarity. Typical Sagdeev pseudopotentials and solitary wave profiles have been presented. Finally, the analysis has nowhere used the assumption that the dust would be much more massive than the ions and hence, one or both dust species can easily be replaced by positive and/or negative ions and the conclusions will apply to that plasma model equally well. This would cover a number of different scenarios, such as, for example, very hot electrons and ions, together with a mix of adiabatic ions and dust (of either polarity) or a very hot electron-positron mix, together with a two-ion mix or together with adiabatic ions and cold dust (both of either charge sign), to name but some of the possible plasma compositions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The random walk of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. An isotropic model is employed for the magnetic turbulence spectrum. An analytical investigation of the asymptotic behavior of the field-line mean-square displacement is carried out. in terms of the position variable z. It is shown that varies as similar to z ln z for large distance z. This result corresponds to a superdiffusive behavior of field line wandering. This investigation complements previous work, which relied on a two-component model for the turbulence spectrum. Contrary to that model, quasilinear theory appears to provide an adequate description of the field line random walk for isotropic turbulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear dynamics of a rotating magnetoplasma consisting of electrons, positrons and stationary positive ions is considered. The basic set of hydrodynamic and Poisson equations are reduced to a Zakharov-Kuznetsov (ZK) equation for the electric potential. The ZK equation is solved by applying an improved modified extended tanh-function method (2008 Phys. Lett. A 372 5691) and its characteristics are investigated. A set of new solutions are derived, including localized solitary waves, periodic nonlinear waveforms and divergent (explosive) pulses. The characteristics of these nonlinear excitations are investigated in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent paper [L.-N. Hau and W.-Z. Fu, Phys. Plasmas 14, 110702 (2007)] deals with certain mathematical and physical properties of the kappa distribution. We comment on the authors' use of a form of distribution function that is different from the "standard" form of the kappa distribution, and hence their results, inter alia for an expansion of the distribution function and for the associated number density in an electrostatic potential, do not fully reflect the dependence on kappa that would be associated with the conventional kappa distribution. We note that their definition of the kappa distribution function is also different from a modified distribution based on the notion of nonextensive entropy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amplitude modulation of ion-acoustic waves IS investigated in a plasma consisting of adiabatic warm ions, and two different populations of thermal electrons at different temperatures. The fluid equations are reduced to nonlinear Schrodinger equation by employing a multi-scale perturbation technique. A linear stability analysis for the wave packet amplitude reveals that long wavelengths are always stable, while modulational instability sets in for shorter wavelengths. It is shown that increasing the value of the hot-to-cold electron temperature ratio (mu), for a given value of the hot-to-cold electron density ratio (nu): favors instability. The role of the ion temperature is also discussed. In the limiting case nu = 0 (or nu -> infinity). which correspond(s) to an ordinary (single) electron-ion plasma, the results of previous works are recovered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-compression of a relativistic Gaussian laser pulse propagating in a non-uniform plasma is investigated. A linear density inhomogeneity (density ramp) is assumed in the axial direction. The nonlinear Schrodinger equation is first solved within a one-dimensional geometry by using the paraxial formalism to demonstrate the occurrence of longitudinal pulse compression and the associated increase in intensity. Both longitudinal and transverse self-compression in plasma is examined for a finite extent Gaussian laser pulse. A pair of appropriate trial functions, for the beam width parameter (in space) and the pulse width parameter (in time) are defined and the corresponding equations of space and time evolution are derived. A numerical investigation shows that inhomogeneity in the plasma can further boost the compression mechanism and localize the pulse intensity, in comparison with a homogeneous plasma. A 100 fs pulse is compressed in an inhomogeneous plasma medium by more than ten times. Our findings indicate the possibility for the generation of particularly intense and short pulses, with relevance to the future development of tabletop high-power ultrashort laser pulse based particle acceleration devices and associated high harmonic generation. An extension of the model is proposed to investigate relativistic laser pulse compression in magnetized plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear amplitude modulation dynamics of electrostatic oscillations of massive charged defects in a three-component pair plasma is investigated; i.e. doped pair-ion plasmas (anticipating the injection of a massive charged component in the background; e.g. in fullerene experiments). Ton-acoustic oscillations in electron-positron-ion (e-p-i) plasmas are also covered, in the appropriate limit. Linear and nonlinear effects (MI, envelope modes) are discussed. The role of the temperature and density ratio between the pair species is stressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of non-Maxwellian plasmas is crucial to the understanding of space and astrophysical plasma dynamics. In this paper, we investigate the existence of arbitrary amplitude ion-acoustic solitary waves in an unmagnetized plasma consisting of ions and excess superthermal electrons (modelled by a kappa-type distribution), which is penetrated by an electron beam. A kappa (kappa-) type distribution is assumed for the background electrons. A (Sagdeev-type) pseudopotential formalism is employed to derive an energy-balance like equation. The range of allowed values of the soliton speed (Mach number), wherein solitary waves may exist, is determined. The Mach number range (allowed soliton speed values) becomes narrower under the combined effect of the electron beam and of the superthermal electrons, and may even be reduced to nil (predicting no solitary wave existence) for high enough beam density and low enough kappa (significant superthermality). For fixed values of all other parameters (Mach number, electron beam-to-ion density ratio and electron beam velocity), both soliton amplitude and (electric potential perturbation) profile steepness increase as kappa decreases. The combined occurrence of small-amplitude negative potential structures and larger amplitude positive ones is pointed out, while the dependence of either type on the plasma parameters is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatiotemporal pulse dynamics of a high-power relativistic laser pulse interacting with an electron-positron-ion plasmas is investigated theoretically and numerically. The occurrence of pulse compression is studied. The dependence of the mechanism on the concentration of the background ions in electron positron plasma is emphasized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of the intensity of a relativistic laser beam propagating through a dense quantum plasma is investigated, by considering different plasma regimes. A cold quantum fluid plasma and then a thermal quantum description(s) is (are) adopted, in comparison with the classical case of reference. Considering a Gaussian beam cross-section, we investigate both the longitudinal compression and lateral/longitudinal localization of the intensity of a finite-radius electromagnetic pulse. By employing a quantum plasma fluid model in combination with Maxwell's equations, we rely on earlier results on the quantum dielectric response, to model beam-plasma interaction. We present an extensive parametric investigation of the dependence of the longitudinal pulse compression mechanism on the electron density in cold quantum plasmas, and also study the role of the Fermi temperature in thermal quantum plasmas. Our numerical results show pulse localization through a series of successive compression cycles, as the pulse propagates through the plasma. A pulse of 100 fs propagating through cold quantum plasma is compressed to a temporal size of approximate to 1.35 attosecond and a spatial size of approximate to 1.08 10(-3) cm. Incorporating Fermi pressure via a thermal quantum plasma model is shown to enhance localization effects. A 100 fs pulse propagating through quantum plasma with a Fermi temperature of 350 K is compressed to a temporal size of approximate to 0.6 attosecond and a spatial size of approximate to 2.4 10(-3) cm. (c) 2010 Elsevier B.V. All rights reserved.