64 resultados para Nonsmooth Critical Point Theory
Resumo:
Significant recent progress has shown ear recognition to be a viable biometric. Good recognition rates have been demonstrated under controlled conditions, using manual registration or with specialised equipment. This paper describes a new technique which improves the robustness of ear registration and recognition, addressing issues of pose variation, background clutter and occlusion. By treating the ear as a planar surface and creating a homography transform using SIFT feature matches, ears can be registered accurately. The feature matches reduce the gallery size and enable a precise ranking using a simple 2D distance algorithm. When applied to the XM2VTS database it gives results comparable to PCA with manual registration. Further analysis on more challenging datasets demonstrates the technique to be robust to background clutter, viewing angles up to +/- 13 degrees and with over 20% occlusion.
Resumo:
Beta diversity describes how local communities within an area or region differ in species composition/abundance. There have been attempts to use changes in beta diversity as a biotic indicator of disturbance, but lack of theory and methodological caveats have hampered progress. We here propose that the neutral theory of biodiversity plus the definition of beta diversity as the total variance of a community matrix provide a suitable, novel, starting point for ecological applications. Observed levels of beta diversity (BD) can be compared to neutral predictions with three possible outcomes: Observed BD equals neutral prediction or is larger (divergence) or smaller (convergence) than the neutral prediction. Disturbance might lead to either divergence or convergence, depending on type and strength. We here apply these ideas to datasets collected on oribatid mites (a key, very diverse soil taxon) under several regimes of disturbances. When disturbance is expected to increase the heterogeneity of soil spatial properties or the sampling strategy encompassed a range of diverging environmental conditions, we observed diverging assemblages. On the contrary, we observed patterns consistent with neutrality when disturbance could determine homogenization of soil properties in space or the sampling strategy encompassed fairly homogeneous areas. With our method, spatial and temporal changes in beta diversity can be directly and easily monitored to detect significant changes in community dynamics, although the method itself cannot inform on underlying mechanisms. However, human-driven disturbances and the spatial scales at which they operate are usually known. In this case, our approach allows the formulation of testable predictions in terms of expected changes in beta diversity, thereby offering a promising monitoring tool.
Resumo:
Critical decisions are made by decision-makers throughout
the life-cycle of large-scale projects. These decisions are crucial as they
have a direct impact upon the outcome and the success of projects. To aid
decision-makers in the decision making process we present an evidential
reasoning framework. This approach utilizes the Dezert-Smarandache
theory to fuse heterogeneous evidence sources that suffer from levels
of uncertainty, imprecision and conflicts to provide beliefs for decision
options. To analyze the impact of source reliability and priority upon
the decision making process, a reliability discounting technique and a
priority discounting technique, are applied. A maximal consistent subset
is constructed to aid in dening where discounting should be applied.
Application of the evidential reasoning framework is illustrated using a
case study based in the Aerospace domain.