75 resultados para NanoSIMS, Isotope, Stickstoff, Atmosphäre, Chemie
Resumo:
To ascertain the response of the southern Greenland Ice Sheet (GIS) to a boreal summer climate warmer than at present, we explored whether southern Greenland was deglaciated during the Last Interglacial (LIG), using the Sr-Nd-Pb isotope ratios of silt-sized sediment discharged from southern Greenland. Our isotope data indicate that no single southern Greenland geologic terrane was completely deglaciated during the LIG, similar to the Holocene. Differences in sediment sources during the LIG relative to the early Holocene denote, however, greater southern GIS retreat during the LIG. These results allow the evaluation of a suite of GIS models and are consistent with a GIS contribution of 1.6 to 2.2 meters to the =4-meter LIG sea-level highstand, requiring a significant sea-level contribution from the Antarctic Ice Sheet.
Resumo:
RATIONALE Stable isotope values (d13C and d15N) of darted skin and blubber biopsies can shed light on habitat use and diet of cetaceans, which are otherwise difficult to study. Non-dietary factors affect isotopic variability, chiefly the depletion of C due to the presence of C-rich lipids. The efficacy of post hoc lipid-correction models (normalization) must be tested. METHODS For tissues with high natural lipid content (e.g., whale skin and blubber), chemical lipid extraction or normalization is necessary. C:N ratios, d13C values and d15N values were determined for duplicate control and lipid-extracted skin and blubber of fin (Balaenoptera physalus), humpback (Megaptera novaeangliae) and minke whales (B. acutorostrata) by continuous-flow elemental analysis isotope ratio mass spectrometry (CF-EA-IRMS). Six different normalization models were tested to correct d13C values for the presence of lipids. RESULTS Following lipid extraction, significant increases in d13C values were observed for both tissues in the three species. Significant increases were also found for d15N values in minke whale skin and fin whale blubber. In fin whale skin, the d15N values decreased, with no change observed in humpback whale skin. Non-linear models generally out-performed linear models and the suitability of models varied by species and tissue, indicating the need for high model specificity, even among these closely related taxa. CONCLUSIONS Given the poor predictive power of the models to estimate lipid-free d13C values, and the unpredictable changes in d N values due to lipid-extraction, we recommend against arithmetical normalization in accounting for lipid effects on d13C values for balaenopterid skin or blubber samples. Rather, we recommend that duplicate analysis of lipid-extracted (d13C values) and non-treated tissues (d15N values) be used. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Accurate field data on trophic interactions for suspension feeders are lacking, and new approaches to dietary analysis are necessary. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was integrated with stable isotope analysis to examine dietary patterns in suspension-feeding Mytilus spp. from seven spatially discrete locations within a semi-enclosed marine bay (Strangford Lough, Northern Ireland) during June 2009. Results of the two methods were highly correlated, reflecting dietary variation in a similar manner. Variation in PCR-DGGE data was more strongly correlated with the principal environmental gradient (distance from the opening to the Irish Sea), while values of dC and dN became progressively enriched, suggesting a greater dependence on animal tissue and benthic microalgae. Diatoms and crustaceans were the most frequently observed phylotypes identified by sequencing, but specific DNA results provided little support for the trophic trends observed in the stable isotope data. This combined approach offers an increased level of trophic insight for suspension feeders and could be applied to other organisms. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Essential to the conduct of epidemiologic studies examining aflatoxin exposure and the risk of heptocellular carcinoma, impaired growth, and acute toxicity has been the development of quantitative biomarkers of exposure to aflatoxins, particularly aflatoxin B-1. In this study, identical serum sample sets were analyzed for aflatoxin-albumin adducts by ELISA, high-performance liquid chromatography (HPLC) with fluorescence detection (HPLC-f), and HPLC with isotope dilution mass spectrometry (IDMS). The human samples analyzed were from an acute aflatoxicosis outbreak in Kenya in 2004 (n = 102) and the measured values ranged from 0.018 to 67.0, nondetectable to 13.6, and 0.002 to 17.7 ng/mg albumin for the respective methods. The Deming regression slopes for the HPLC-f and ELISA concentrations as a function of the IDMS concentrations were 0.71 (r(2) = 0.95) and 3.3 (r(2) = 0.96), respectively. When the samples were classified as cases or controls, based on clinical diagnosis, all methods were predictive of outcome (P < 0.01). Further, to evaluate assay precision, duplicate samples were prepared at three levels by dilution of an exposed human sample and were analyzed on three separate days. Excluding one assay value by ELISA and one assay by HPLC-f, the overall relative SD were 8.7%, 10.5%, and 9.4% for IDMS, HPLC-f, and ELISA, respectively. IDMS was the most sensitive technique and HPLC-f was the least sensitive method. Overall, this study shows an excellent correlation between three independent methodologies conducted in different laboratories and supports the validation of these technologies for assessment of human exposure to this environmental toxin and carcinogen.
Resumo:
We have developed a new technique for quantifying methionine sulfoxide (MetSO) in protein to assess levels of oxidative stress in physiological systems. In this procedure, samples are hydrolyzed with methanesulfonic acid (MSA) in order to avoid the conversion of MetSO to methionine (Met) that occurs during hydrolysis of protein in HCl. The hydrolysate is fractionated on a cation exchange column to remove the nonvolatile MSA from amino acids, and the amino acids are then derivatized as their trimethylsilyl esters for analysis by selected ion monitoring-gas chromatography/mass spectrometry. The limit of detection of the assay is 200 pmol of MetSO per analysis, and the interassay coefficient of variation is 5.8%. Compared to current methods, the SIM-GC/MS assay avoids the potential for conversion of Met to MetSO during sample preparation, requires less sample preparation time, has lower variability, and uses mass spectrometry for sensitive and specific analyte detection.
Resumo:
The presence of NO during the regeneration period of a Pt-Ba/Al O Lean NO Trap (LNT) catalyst modifies significantly the evolution of products formed from the reduction of stored nitrates, particularly nitrogen and ammonia. The use of isotope labelling techniques, feeding NO during the storage period and NO during regeneration allows us to propose three different routes for nitrogen formation based on the different masses detected during regeneration, i.e. N (m/e = 28), N N (m/e = 29) and N (m/e = 30). It is proposed that the formation of nitrogen via Route 1 involves the reaction between hydrogen and NO released from the storage component to form NH mainly. Then, ammonia further reacts with NO located downstream to form N . In Route 2, it is postulated that the incoming NO reacts with hydrogen to form NH in the reactor zone where the trap has been already regenerated. This isotopically labelled ammonia travels through the catalyst bed until it reaches the regeneration front where it participates in the reduction of stored nitrates ( NO ) to form N N. The formation of N via Route 3 is believed to occur by the reaction between incoming NO and H . The modification of the hydrogen concentration fed during regeneration affects the relative importance of H or NH as reductants and thus the production of N via Route 1 and N N via Route 2.
Resumo:
In recent years distillers dried grains and solubles (DDGS), co-products of the bio-ethanol and beverages industries, have become globally traded commodity for the animal feed sector. As such it is becoming increasingly important to be able to trace the geographical origin of commodities in case of a contamination incident or authenticity issue arise. In this study, 137 DDGS samples from a range of different geographical origins (China, USA, Canada and European Union) were collected and analyzed. Isotope ratio mass spectrometry (IRMS) was used to analyze the DDGS for 2H/1H, 13C/12C, 15N/14N, 18O/16O and 34S/32S isotope ratios which can vary depending on geographical origin and processing. Univariate and multivariate statistical techniques were employed to investigate the feasibility of using the IRMS data to determine botanical and geographical origin of the DDGS. The results indicated that this commodity could be differentiated according to their place of origin by the analysis of stable isotopes of hydrogen, carbon, nitrogen and oxygen but not with sulfur. By adding data to the models produced in this study, potentially an isotope databank could be set up for traceability procedures for DDGS, similar to the one established already for wine which will help in feed and food security issues arising worldwide.
Resumo:
We report the results of stable carbon and nitrogen isotope analysis of 354 human and faunal samples from five archaeological cultures of the Minusinsk Basin, Southern Siberia – Afanasyevo, Okunevo, Andronovo, Karasuk and Tagar (ca. 2700–1 BC) – a key location in Eurasia due to its position on a northern corridor linking China and central Eurasia. The results indicate that the diet of Eneolithic to Middle Bronze Age (Afanasyevo to Andronovo) populations was primarily C3-based, with C4 plants only becoming an important component of the diet in the Late Bronze Age Karasuk and Early Iron Age Tagar cultures. Freshwater fish seems to have been an important constituent of the diets in all groups. The findings constitute the earliest concrete evidence for the substantial use of millet in the eastern Eurasian steppe. We propose that it was probably introduced from Northwestern China during the Karasuk culture at the start of the Late Bronze Age, ca. 1500 BC. We conclude with a discussion of the implications for the nature of pastoralist economies on the steppes.
Resumo:
We have previously reported the effectiveness of TiO2 photocatalysis in the destruction of species generated by cyanobacteria, specifically geosmin and microcystin-LR. In this paper we report an investigation of factors which influence the rate of the toxin destruction at the catalyst surface. A primary kinetic solvent isotope effect of approximately 1.5 was observed when the destruction was performed in a heavy water solvent. This is in contrast to previous reports of a solvent isotope effect of approximately 3, however, these studies were undertaken with a different photocatalyst material. The solvent isotope effect therefore appears to be dependent on the photocatalyst material used. The results of the study support the theory that the photocatalytic decomposition occurs on the catalyst surface rather than in the bulk of the solution. Furthermore it appears that the rate determining step is not oxygen reduction as previously reported.
Resumo:
Purpose: Despite the significant interest in molecular hydrogen as an antioxidant in the last eight years, its quantitative metabolic parameters in vivo are still lacking, as is an appropriate method for determination of hydrogen effectivity in the mammalian organism under various conditions.
Basic Procedures: Intraperitoneally-applied deuterium gas was used as a metabolic tracer and deuterium enrichment was determined in the body water pool. Also, in vitro experiments were performed using bovine heart submitochondrial particles to evaluate superoxide formation in Complex I of the respiratory chain.
Main Findings: A significant oxidation of about 10% of the applied dose was found under physiological conditions in rats, proving its antioxidant properties. Hypoxia or endotoxin application did not exert any effect, whilst pure oxygen inhalation reduced deuterium oxidation. During in vitro experiments, a significant reduction of superoxide formation by Complex I of the respiratory chain was found under the influence of hydrogen. The possible molecular mechanisms of the beneficial effects of hydrogen are discussed, with an emphasis on the role of iron sulphur clusters in reactive oxygen species generation and on iron species-dihydrogen interaction.
Principal Conclusions: According to our findings, hydrogen may be an efficient, non-toxic, highly bioavailable and low-cost antioxidant supplement for patients with pathological conditions involving ROS-induced oxidative stress.
Resumo:
Ten medieval permanent teeth were subjected to incremental dentine sectioning and stable isotope analysis to investigate dietary changes in high resolution. In addition to this, eight increments were also selected for 14C measurements to examine possible intra-individual age differences. Results reveal the cessation of weaning, various dietary profiles and in some cases significantly different 14C ages obtained from a single tooth. This case study illustrates how 14C measurements can function as a proxy alongside the commonly used carbon and nitrogen stable isotope values to interpret the diet of past individuals