92 resultados para Mixture toxicity
Resumo:
Land application of wastes from concentrated animal feeding operations results in accumulation of copper (Cu) and antimicrobials in terrestrial systems. Interaction between Cu and antimicrobials may change Cu speciation in soil solution, and affect Cu bioavailability and toxicity. In this study, earthworms were exposed to quartz sand percolated with different concentrations of Cu and ciprofloxacin (CIP). Copper uptake by earthworms, its subcellular partition, and toxicity were studied. An increase in the applied CIP decreased the free Cu ion concentration in external solution and mortalities of earthworm, while Cu contents in earthworms increased. Copper and CIP in earthworms were fractionated into five fractions: a granular fraction (D), a fraction consisting of tissue fragments, cell membranes, and intact cells (E), a microsomal fraction (F), a denatured proteins fraction (G), and a heat-stable proteins fraction (H). Most of the CIP in earthworms was in fraction H. Copper was redistributed from the metal-sensitive fraction E to fractions D, F, G, and H with increasing CIP concentration. These results challenge the free ion activity model and suggested that Cu may be partly taken up as Cu-CIP complexes in earthworms, changing the bioavailability, subcellular distribution, and toxicity of Cu to earthworms.
Resumo:
To investigate the role of modified low-density lipoproteins (LDL) in the pathogenesis of diabetic retinopathy, we studied the cytotoxicity of normal and mildly modified human LDL to bovine retinal capillary endothelial cells and pericytes in vitro. Pooled LDL was incubated (in phosphate-buffered saline-EDTA, 3 days, 37 degrees C) under 1) nitrogen with additional chelating agents and 2) air, to prepare normal and minimally oxidized LDL, respectively. Similar conditions, but with the addition of 50 mM D-glucose, were used to prepare glycated and glycoxidized LDL. None of the LDL preparations was recognized by the macrophage scavenger receptor, confirming limited modification. Retinal capillary endothelial cells and pericytes were grown to confluence and then exposed for 2 or 3 days to serum-free medium (1% albumin) supplemented with normal or modified LDL (100 mg/l) or to serum-free medium alone. Cytotoxicity was assessed by cell counting (live and total cells) and by cell protein determination. Compared with normal LDL, modified LDL were cytotoxic to both cell types at both time points, causing highly significant decreases in live and total cell counts (P <0.001) (analysis of variance). Reductions in cell protein also were significant for pericytes at day 3 (P = 0.016) and of borderline significance for endothelial cells at day 2 (P = 0.05) and day 3 (P = 0.063). Cytotoxicity increased as follows: normal <glycated <or = minimally oxidized <glycoxidized LDL. We conclude that, in diabetes, mild modification of LDL resulting from separate or combined processes of glycation and oxidation may contribute to chronic retinal capillary injury and thus to the development of diabetic retinopathy.
Resumo:
Abstract
PURPOSE:
The optimal duration over which lung SBRT should be delivered is unknown. We conducted a randomized pilot study in patients treated with four fractions of lung SBRT delivered over 4 or over 11days.
METHODS:
Patients with a peripheral solitary lung tumor (NSCLC or pulmonary metastasis) ?5cm were eligible. For NSCLC lung tumors ?3cm, a dose of 48Gy in 4 fractions was used, otherwise 52Gy in 4 fractions was delivered. Patients were randomized to receive treatment over 4 consecutive days or over 11days. The primary end-point was acute grade ?2 toxicity. Secondary end-points included quality of life (QOL) assessed using the EORTC QLQ-C30 and QLQ-LC13 questionnaires.
RESULTS:
Fifty four patients were enrolled. More patients in the 11day group had respiratory symptoms at baseline. 55.6% patients treated over 4days and 33.3% of patients treated over 11days experienced acute grade ?2 toxicity (p=0.085). Dyspnea, fatigue and coughing domains were worse in the 11day group at baseline. At 1 and 4months, more patients in the 4day group experienced a clinically meaningful worsening in the dyspnea QOL domain compared to the 11day group (44.5% vs 15.4%, p=0.02; 38.5% vs 12.0%, p=0.03, respectively). However, raw QOL scores were not different at these time-points between treatment groups.
CONCLUSIONS:
Grade 2 or higher acute toxicity was more common in the 4day group, approaching statistical significance. More patients treated on 4 consecutive days reported a clinically meaningful increase in dyspnea, although interpretation of these results is challenging due to baseline imbalance between treatment groups. Larger studies are required to validate these results.
Resumo:
Biological dose escalation through stereotactic ablative radiotherapy (SABR) holds promise of improved patient convenience, system capacity and tumor control with decreased cost and side effects. The objectives are to report the toxicities, biochemical and pathologic outcomes of this prospective study.
Resumo:
AIMS: To investigate the potential dosimetric and clinical benefits predicted by using four-dimensional computed tomography (4DCT) compared with 3DCT in the planning of radical radiotherapy for non-small cell lung cancer.
MATERIALS AND METHODS:
Twenty patients were planned using free breathing 4DCT then retrospectively delineated on three-dimensional helical scan sets (3DCT). Beam arrangement and total dose (55 Gy in 20 fractions) were matched for 3D and 4D plans. Plans were compared for differences in planning target volume (PTV) geometrics and normal tissue complication probability (NTCP) for organs at risk using dose volume histograms. Tumour control probability and NTCP were modelled using the Lyman-Kutcher-Burman (LKB) model. This was compared with a predictive clinical algorithm (Maastro), which is based on patient characteristics, including: age, performance status, smoking history, lung function, tumour staging and concomitant chemotherapy, to predict survival and toxicity outcomes. Potential therapeutic gains were investigated by applying isotoxic dose escalation to both plans using constraints for mean lung dose (18 Gy), oesophageal maximum (70 Gy) and spinal cord maximum (48 Gy).
RESULTS:
4DCT based plans had lower PTV volumes, a lower dose to organs at risk and lower predicted NTCP rates on LKB modelling (P < 0.006). The clinical algorithm showed no difference for predicted 2-year survival and dyspnoea rates between the groups, but did predict for lower oesophageal toxicity with 4DCT plans (P = 0.001). There was no correlation between LKB modelling and the clinical algorithm for lung toxicity or survival. Dose escalation was possible in 15/20 cases, with a mean increase in dose by a factor of 1.19 (10.45 Gy) using 4DCT compared with 3DCT plans.
CONCLUSIONS:
4DCT can theoretically improve therapeutic ratio and dose escalation based on dosimetric parameters and mathematical modelling. However, when individual characteristics are incorporated, this gain may be less evident in terms of survival and dyspnoea rates. 4DCT allows potential for isotoxic dose escalation, which may lead to improved local control and better overall survival.
Resumo:
This paper investigates sub-integer implementations of the adaptive Gaussian mixture model (GMM) for background/foreground segmentation to allow the deployment of the method on low cost/low power processors that lack Floating Point Unit (FPU). We propose two novel integer computer arithmetic techniques to update Gaussian parameters. Specifically, the mean value and the variance of each Gaussian are updated by a redefined and generalised "round'' operation that emulates the original updating rules for a large set of learning rates. Weights are represented by counters that are updated following stochastic rules to allow a wider range of learning rates and the weight trend is approximated by a line or a staircase. We demonstrate that the memory footprint and computational cost of GMM are significantly reduced, without significantly affecting the performance of background/foreground segmentation.
Resumo:
Recently it has been shown that levels of circulating oxidized LDL immune complexes (ox-LDL-IC) predict the development of diabetic retinopathy (DR). This study aimed to investigate whether ox-LDL-IC are actually present in the diabetic retina, and to define their effects on human retinal pericytes vs. ox-LDL. In retinal sections from people with type 2 diabetes, co-staining for ox-LDL and IgG was present, proportionate to DR severity, and detectable even in the absence of clinical DR. In contrast, no such staining was observed in retinas from non-diabetic subjects. In vitro, human retinal pericytes were treated with native (N-) LDL, ox-LDL, and ox-LDL-IC (0-200 mg protein/l), and measures of viability, receptor expression, apoptosis, ER and oxidative stresses, and cytokine secretion were evaluated. Ox-LDL-IC exhibited greater cytotoxicity than ox-LDL towards retinal pericytes. Acting through the scavenger (CD36) and IgG (CD64) receptors, low concentrations of ox-LDL-IC triggered apoptosis mediated by oxidative and ER stresses, and enhanced inflammatory cytokine secretion. The data suggest that IC formation in the diabetic retina enhances the injurious effects of ox-LDL. These findings offer new insights into pathogenic mechanisms of DR, and may lead to new preventive measures and treatments.
Resumo:
Background and purpose: Gold nanoparticles (GNPs) are novel agents that have been shown to cause radiosensitisation in vitro and in vivo. Tumour hypoxia is associated with radiation resistance and reduced survival in cancer patients. The interaction of GNPs with cells in hypoxia is explored.
Materials and methods: GNP uptake, localization, toxicity and radiosensitisation were assessed in vitro under oxic and hypoxic conditions.
Results: GNP cellular uptake was significantly lower under hypoxic than oxic conditions. A significant reduction in cell proliferation in hypoxic MDA-MB-231 breast cancer cells exposed to GNPs was observed. In these cells significant radiosensitisation occurred in normoxia and moderate hypoxia. However, in near anoxia no significant sensitisation occurred.
Conclusions: GNP uptake occurred in hypoxic conditions, causing radiosensitisation in moderate, but not extreme hypoxia in a breast cancer cell line. These findings may be important for the development of GNPs for cancer therapy.
Resumo:
The simultaneous delivery of multiple cancer drugs in combination therapies to achieve optimal therapeutic effects in patients can be challenging. This study investigated whether co-encapsulation of the BH3-mimetic ABT-737 and the topoisomerase I inhibitor camptothecin (CPT) in PEGylated polymeric nanoparticles (NPs) was a viable strategy for overcoming their clinical limitations and to deliver both compounds at optimal ratios. We found that thrombocytopenia induced by exposure to ABT-737 was diminished through its encapsulation in NPs. Similarly, CPT-associated leukopenia and gastrointestinal toxicity were reduced compared with the administration of free CPT. In addition to the reduction of dose-limiting side effects, the co-encapsulation of both anticancer compounds in a single NP produced synergistic induction of apoptosis in both in vitro and in vivo colorectal cancer models. This strategy may widen the therapeutic window of these and other drugs and may enhance the clinical efficacy of synergistic drug combinations.
Resumo:
The momentum term has long been used in machine learning algorithms, especially back-propagation, to improve their speed of convergence. In this paper, we derive an expression to prove the O(1/k2) convergence rate of the online gradient method, with momentum type updates, when the individual gradients are constrained by a growth condition. We then apply these type of updates to video background modelling by using it in the update equations of the Region-based Mixture of Gaussians algorithm. Extensive evaluations are performed on both simulated data, as well as challenging real world scenarios with dynamic backgrounds, to show that these regularised updates help the mixtures converge faster than the conventional approach and consequently improve the algorithm’s performance.