65 resultados para Microwave sintering
Resumo:
This study evaluated the effect of an industrial scale continuous flow microwave volumetric heating system in comparison to conventional commercial scale pasteurisation for the processing of tomato juice in terms of physicochemical properties, microbial characteristics and antioxidant capacity. The effect against oxidative stress in Caco-2 cells, after in vitro digestion was also investigated. Physicochemical and colour characteristics of juices were very similar between technologies and during storage. Both conventional and microwave pasteurisation inactivated microorganisms and kept them in low levels throughout storage. ABTS+ values, but not ORAC, were higher for the microwave pasteurised juice at day 0 however no significant differences between juices were observed during storage. Juice processed with the microwave system showed an increased cytoprotective effect against H2O2 induced oxidation in Caco-2 cells. Organoleptic analysis revealed that the two tomato juices were very similar. The continuous microwave volumetric heating system appears to be a viable alternative to conventional pasteurisation.
Resumo:
A novel microwave high-resolution near-field imaging technique is proposed and experimentally evaluated in reflectometry imaging scenarios involving planar metal-dielectric structures. Two types of resonance near field probes-a small helix antenna and a loaded subwavelength slot aperture are studied in this paper. These probes enable very tight spatial field localization with the full width at half maximum around one tenth of a wavelength, λ, at λ/100-λ/10 standoff distance. Importantly, the proposed probes permit resonance electromagnetic coupling to dielectric or printed conductive patterns, which leads to the possibility of very high raw image resolution with imaged feature-to-background contrast greater than 10-dB amplitude and 50° phase. In addition, high-resolution characterization of target geometries based on the cross correlation image processing technique is proposed and assessed using experimental data. It is shown that printed elements features with subwavelength size ~λ/15 or smaller can be characterized with at least 10-dB resolution contrast.
Resumo:
This paper describes the design of a frequency selective surface (FSS) which provides transmission of 228 - 230 GHz radiation and rejection from 164 – 191.3 GHz with insertion losses under 0.25 dB for TE wave polarization at 45 incidence. This state-of-the art filter consists of two air spaced freestanding perforated screens, comprising unit cell elements of resonant slots folded for the purpose of miniaturisation to enhance angular stability. The reported geometry enhances the angular stability (45 ± 10) of the FSS beyond what is possible with canonical linear slots and satisfies the stringent electromagnetic performance requirements for signal demultiplexing in the quasi-optical feed train of the Microwave Sounder (MWS) instrument.
Resumo:
The line intensity ratio method provides a nonintrusive diagnostic for the measurement of electron temperature in microwave-generated plasmas. For optically thin plasmas of low density, a line intensity method using He I lines can often be used, and is based on the fact that the electron impact excitation rate coefficients for helium singlet and triplet states are insensitive to electron density but differ as a function of the electron temperature. Line intensity measurements are presented from microwave-generated helium plasmas. Both steady-state corona and collision-radiative theoretical models are used to evaluate the ground and excited state populations. The line ratio versus electron temperature obtained from both of these methods are compared with the results from measurements. However, it is not possible to diagnose the electron temperature from the line ratios alone due to the presence of significant opacity and nonnegligible 1s2s S-3 metastable fraction in the plasma. (C) 2004 American Institute of Physics.