82 resultados para Medical studies and experimental treatments
A Theoretical and Experimental Study of Resonance in a High Performance Engine Intake System: Part 2
Resumo:
The unsteady gas dynamic phenomena in a racecar airbox have been examined, and resonant tuning effects have been considered. A coupled 1D/3D analysis, using the engine simulation package Virtual 4-Stroke and the CFD package FLUENT, was used to model the engine and airbox. The models were experimentally validated. An airbox was designed with a natural frequency in the region of 75 Hz. A coupled 1D/3D analysis of the airbox and a Yamaha R6 4 cylinder engine predicted resonance at the single-cylinder induction frequency; 75 Hz at an engine speed of 9000 rpm.
Resumo:
To determine UK non-medical prescribers' (NMPs) (supplementary or independent) current participation and self-reported competence in pharmacovigilance, and their perceptions of training and future needs.
Resumo:
The understanding of how mutations of the cystic fibrosis gene results in recurrent infection and the development of bronchiectasis is now well established. This review examines aspects of lung pathophysiology specifically, abnormal mucociliary clearance, inflammation and infection which are the basis of the daily symptoms encountered by people with cystic fibrosis. Other components of the lung epithelium and their potential contribution to cystic fibrosis disease are discussed. Therapeutic interventions which aim to target abnormal mucociliary clearance are summarized. © 2011 Elsevier Ltd.
Resumo:
This paper presents novel advances on the deformation behaviour of polycrystalline and single crystal silicon using molecular dynamics (MD) simulation and validation of the same via nanoindentation experiments. In order to unravel the mechanism of deformation, four simulations were performed: Indentation of polycrystalline silicon substrate with a (i) Berkovich pyramidal and a (ii) spherical (arc) indenter, and indentation of a single crystal silicon substrate with these two indenters. The simulation results reveal that high pressure phase transformation (HPPT) in silicon (Si-I to Si-II phase transformation) occurred in all cases, however, its extent and the manner in which it occurred differed significantly between polycrystalline silicon and single crystal silicon, and was the main driver of differences in nanoindentation deformation behaviour between the two types of silicon. An interesting observation was that in polycrystalline silicon, the HPPT was observed to occur preferentially along the grain boundaries than across the grain boundaries. An automated dislocation extraction algorithm (DXA) revealed no dislocations in the deformation zone, suggesting HPPT to be the primary mechanism in inducing plasticity in silicon.
Resumo:
Data registration refers to a series of techniques for matching or bringing similar objects or datasets together into alignment. These techniques enjoy widespread use in a diverse variety of applications, such as video coding, tracking, object and face detection and recognition, surveillance and satellite imaging, medical image analysis and structure from motion. Registration methods are as numerous as their manifold uses, from pixel level and block or feature based methods to Fourier domain methods.
This book is focused on providing algorithms and image and video techniques for registration and quality performance metrics. The authors provide various assessment metrics for measuring registration quality alongside analyses of registration techniques, introducing and explaining both familiar and state-of-the-art registration methodologies used in a variety of targeted applications.
Key features:
- Provides a state-of-the-art review of image and video registration techniques, allowing readers to develop an understanding of how well the techniques perform by using specific quality assessment criteria
- Addresses a range of applications from familiar image and video processing domains to satellite and medical imaging among others, enabling readers to discover novel methodologies with utility in their own research
- Discusses quality evaluation metrics for each application domain with an interdisciplinary approach from different research perspectives
Resumo:
Background: The steady increase in the number of people living and dying with dementia, coupled with the recent focus on quality of care, has highlighted the importance of dementia training for health care professionals. This exploratory study aimed to discover which skills health care students felt were important in providing quality end-of-life care to dementia patients.
Methods: Ninety-four medicine, nursing, and pharmacy students participated in a larger study using open-ended and closed questions to explore attitudes related to caring for dementia patients at the end of life. This study looks at the student responses to an open-ended question regarding the skills and knowledge they believe are needed to provide end-of-life care to dementia patients. Individual responses were reviewed by the researchers, coded into key issues, and tabulated for frequency of occurrences and group differences.
Results: Several common issues emerged: knowledge, patience, empathy, understanding, family involvement, compassion, medication knowledge, respect/patient autonomy, communication, quality of life, and patient education. Significant differences were observed among the participant groups on the following issues: Patience and understanding (pharmacy students mentioned these issues less frequently than medical and nursing students), compassion (medical students mentioned this issue more frequently than pharmacy students), and medication knowledge (pharmacy students mentioned this issue more frequently than medical and nursing students).
Conclusions: Different health care disciplines (in-training) value different skill sets for the provision of dementia care at the end-of-life. As health care education for dementia patients at the end of life is expanded, it will be important to understand which skills both patients and health care students value.
Resumo:
Bdellovibrio bacteriovorus is a small, gram-negative, motile bacterium that preys upon other gram-negative bacteria, including several known human pathogens. Its predation efficiency is usually studied in pure cultures containing solely B. bacteriovorus and a suitable prey. However, in natural environments, as well as in any possible biomedical uses as an antimicrobial, Bdellovibrio is predatory in the presence of diverse decoys, including live nonsusceptible bacteria, eukaryotic cells, and cell debris. Here we gathered and mathematically modeled data from three-member cultures containing predator, prey, and nonsusceptible bacterial decoys. Specifically, we studied the rate of predation of planktonic late-log-phase Escherichia coli S17-1 prey by B. bacteriovorus HD100, both in the presence and in the absence of Bacillus subtilis nonsporulating strain 671, which acted as a live bacterial decoy. Interestingly, we found that although addition of the live Bacillus decoy did decrease the rate of Bdellovibrio predation in liquid cultures, this addition also resulted in a partially compensatory enhancement of the availability of prey for predation. This effect resulted in a higher final yield of Bdellovibrio than would be predicted for a simple inert decoy. Our mathematical model accounts for both negative and positive effects of predator-prey-decoy interactions in the closed batch environment. In addition, it informs considerations for predator dosing in any future therapeutic applications and sheds some light on considerations for modeling the massively complex interactions of real mixed bacterial populations in nature.
Resumo:
Through combined theoretical and experimental efforts, the reaction mechanism of ethanol steam reforming on Rh catalysts was studied. The results suggest that acetaldehyde (CH3CHO) is an important reaction intermediate in the reaction on nanosized Rh catalyst. Our theoretical work suggests that the H-bond effect significantly modifies the ethanol decomposition pathway. The possible reaction pathway on Rh (211) surface is suggested as CH3CH2OH -> CH3CH2O -> CH3CHO -> CH3CO -> CH3 + CO -> CH2 + CO -> CH + CO -> C + CO, followed by the water gas shift reaction to yield H-2 and CO2. In addition, we found that the water-gas shift reaction, not the ethanol decomposition, is the bottleneck for the overall ethanol steam reforming process. The CO + OH association is considered the key step, with a sizable energy barrier of 1.31 eV. The present work first discusses the mechanisms and the water effect in ethanol steam reforming reactions on Rh catalyst from both theoretical and experimental standpoints, which may shed light on designing improved catalysts.
Resumo:
H2 is considered to be a potential alternative fuel due to its high energy density by weight and working with pollution free. Currently, ethanol conversion to hydrogen has drawn much attention because it provides a viable way for H2 production from renewable resources. In this work, we combined theoretical and experimental efforts to study the reaction mechanism of ethanol steam reforming on Rh catalysts. The results suggest that acetaldehyde (CH3CHO) is an important reaction intermediate in the reaction on nano-sized Rh catalyst. Our theoretical work suggests that the H-bond effect significantly modifies the ethanol decomposition pathway. The possible reaction pathway on Rh (211) surface is suggested as: CH3CH2OH → CH3CH2O → CH3CHO → CH3CO → CH3+CO → CH2+CO → CH+CO → C+CO, followed by the water gas shift reaction to yield H2 and CO2. It was found that that the water gas shift reaction is paramount in the ethanol steam reforming process.