140 resultados para Material editing


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of stable homogeneous reference materials containing the antimicrobial agent sulphadimidine in pig tissue is described. These were commissioned by the Community Bureau of Reference (BCR), established by the Commission of the European Communities, to promote improvements in analytical accuracy and to ensure uniformity of results determined by member states. Sulphadimidine-containing tissue powders (400 vials each of muscle, liver and kidney) were prepared by orally dosing pigs with drug, producing lyophilized tissue powders and blending these with negative tissues from unmedicated animals to achieve target concentrations. Details of the production process, the stabilizing procedure developed and the analytical assessments of homogeneity and stability are given.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments have been carried out to investigate the polar distribution of atomic material ablated during the pulsed laser deposition of Cu in vacuum. Data were obtained as functions of focused laser spot size and power density. Thin films were deposited onto flat glass substrates and thickness profiles were transformed into polar atomic flux distributions of the form f(theta)=cos(n) theta. At constant focused laser power density on target, I=4.7+/-0.3X10(8) W/cm(2), polar distributions were found to broaden with a reduction in the focused laser spot size. The polar distribution exponent n varied from 15+/-2 to 7+/-1 for focused laser spot diameter variation from 2.5 to 1.4 mm, respectively, with the laser beam exhibiting a circular aspect on target. With the focused laser spot size held constant at phi=1.8 mm, polar distributions were observed to broaden with a reduction in the focused laser power density on target, with the associated polar distribution exponent n varying from 13+/-1.5 to 8+/-1 for focused laser power density variation from 8.3+/-0.3X10(8) to 2.2+/-0.1X10(8) W/cm(2) respectively. Data were compared with an analytical model available within the literature, which correctly predicts broadening of the polar distribution with a reduction in focused laser spot size and with a reduction in focused laser power density, although the experimentally observed magnitude was greater than that predicted in both cases. (C) 1996 American Institute of Physics.