116 resultados para Machine-tools


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globally, priority areas for biodiversity are relatively well known, yet few detailed plans exist to direct conservation action within them, despite urgent need. Madagascar, like other globally recognized biodiversity hot spots, has complex spatial patterns of endemism that differ among taxonomic groups, creating challenges for the selection of within-country priorities. We show, in an analysis of wide taxonomic and geographic breadth and high spatial resolution, that multitaxonomic rather than single-taxon approaches are critical for identifying areas likely to promote the persistence of most species. Our conservation prioritization, facilitated by newly available techniques, identifies optimal expansion sites for the Madagascar government's current goal of tripling the land area under protection. Our findings further suggest that high-resolution multitaxonomic approaches to prioritization may be necessary to ensure protection for biodiversity in other global hot spots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The studies on PKMs have attracted a great attention to robotics community. By deploying a parallel kinematic structure, a parallel kinematic machine (PKM) is expected to possess the advantages of heavier working load, higher speed, and higher precision. Hundreds of new PKMs have been proposed. However, due to the considerable gaps between the desired and actual performances, the majorities of the developed PKMs were the prototypes in research laboratories and only a few of them have been practically applied for various applications; among the successful PKMs, the Exechon machine tool is recently developed. The Exechon adopts unique over-constrained structure, and it has been improved based on the success of the Tricept parallel kinematic machine. Note that the quantifiable theoretical studies have yet been conducted to validate its superior performances, and its kinematic model is not publically available. In this paper, the kinematic characteristics of this new machine tool is investigated, the concise models of forward and inverse kinematics have been developed. These models can be used to evaluate the performances of an existing Exechon machine tool and to optimize new structures of an Exechon machine to accomplish some specific tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is convenient and effective to solve nonlinear problems with a model that has a linear-in-the-parameters (LITP) structure. However, the nonlinear parameters (e.g. the width of Gaussian function) of each model term needs to be pre-determined either from expert experience or through exhaustive search. An alternative approach is to optimize them by a gradient-based technique (e.g. Newton’s method). Unfortunately, all of these methods still need a lot of computations. Recently, the extreme learning machine (ELM) has shown its advantages in terms of fast learning from data, but the sparsity of the constructed model cannot be guaranteed. This paper proposes a novel algorithm for automatic construction of a nonlinear system model based on the extreme learning machine. This is achieved by effectively integrating the ELM and leave-one-out (LOO) cross validation with our two-stage stepwise construction procedure [1]. The main objective is to improve the compactness and generalization capability of the model constructed by the ELM method. Numerical analysis shows that the proposed algorithm only involves about half of the computation of orthogonal least squares (OLS) based method. Simulation examples are included to confirm the efficacy and superiority of the proposed technique.