105 resultados para METHYL-ORANGE
Resumo:
Composites of multi-walled carbon nanotubes (MWCNT) of varied functionality (unfunctionalised and carboxyl and amine functionalised) with polymethyl methacrylate (PMMA) were prepared for use as a bone cement. The MWCNT loadings ranged from 0.1 to 1.0 wt.%. The fatigue properties of these MWCNT–PMMA bone cements were characterised at MWCNT loading levels of 0.1 and 0.25 wt.% with the type and wt.% loading of MWCNT used having a strong influence on the number of cycles to failure. The morphology and degree of dispersion of the MWCNT in the PMMA matrix at different length scales were examined using field emission scanning electron microscopy. Improvements in the fatigue properties were attributed to the MWCNT arresting/retarding crack propagation through the cement through a bridging effect and hindering crack propagation. MWCNT agglomerates were evident within the cement microstructure and the degree of agglomeration was dependent on the level of loading and functionality of the MWCNT. The biocompatibility of the MWCNT–PMMA cements at MWCNT loading levels upto 1.0 wt.% was determined by means of established biological cell culture assays using MG-63 cells. Cell attachment after 4 h was determined using the crystal violet staining assay. Cell viability was determined over 7 days in vitro using the standard colorimetric MTT assay. Confocal scanning laser microscopy and SEM analysis was also used to assess cell morphology on the various substrates.
Resumo:
Sensitive and specific enzyme-linked immunosorbent assays (ELISAs) were developed for the detection of two illegal synthetic dyes: Methyl Yellow (MY) and Rhodamine B (RB) in food. Polyclonal antibodies were raised against synthesised immunogens and employed in unique direct disequilibrium ELISAs. The time of the assays was only twenty minutes (five minutes for each incubation step with sample and enzyme conjugate and ten minutes with enzyme substrate). The IC50 for MY was in the range 1.4-4.2 ng mL(-1) and for RB 0.1-0.5 ng mL(-1). A simple sample preparation method was developed for the analysis of a range of sauces. In the case of spices a dispersive solid phase extraction was applied to purify the extracts. The testing of twenty samples took approximately one and a half hours (including sample preparation and analysis). Both assays were validated according to the Commission Decision 2002/657/EC criteria for use in sauces and spices. The detection capability for MY in sauces and spices was determined to be less than 15 ng g(-1) and 50 ng g(-1), respectively and for RB, 10 ng g(-1) for both types of food samples. The precision of the developed assays was determined in a repeatability study. The intra-and inter-assay coefficients of variation were less than 25% for both tests and matrix types. The simplicity and performance of both assays indicate that they will be very reliable screening methods for the detection of the illegal dyes MY and RB in a range of food products.
Resumo:
The observed adsorption of acid orange 7, AO7(-), on P25 titania over a range of pH values (pH 2-8) gives a good fit to data generated using a charge distribution, multisite complexation, i.e. CD-MUSIC, model, modified for aggregated dye adsorption. For this system the model predicts that both the apparent dark Langmuir adsorption constant. K-L, and the number of adsorption sites, n(o), increase with decreasing pH, and are negligible above pH 6. At pH 2 the CD-MUSIC model predicts the fraction of singly co-ordinated sites occupied by the dye,f(AO7), is ca. 32% under the in situ monitoring experimental conditions used in this work to study the photocatalytic bleaching of AO7(-) under UV light illumination ([TiO2] = 20 mgdm(-3); [AO7(-)](total) = 4.86 x 10(-5) M). Although AO7(-) adsorption on P25 titania is insignificant above pH 6 and increases almost linearly and markedly below this pH, the measured initial rate of bleaching of AO7(-), photocatalysed by titania using UV appears to only increase modestly (
Resumo:
The rate of oxidation of reduced methyl viologen (MV+4) by water, catalyzed by colloidal Pt/Al2O3, is reduced by a factor of congruent-to 5 when D2O is used as a solvent rather than H2O in the presence of a pH 4.40 acetate buffer. In contrast, the rate measured in the presence of a pH 3.05 buffer is reduced only slightly when D2O replaces H2O. H/D isotope separation factors for the methyl viologen mediated reduction of water to hydrogen catalyzed by Pt/Al2O3 are 4.22 (+/- 0.15) at pH 4.40 and 5.99 (+/- 0.11) at pH 3.05, at 25-degrees-C. These data are interpreted in terms of the electrochemical model for metal-catalyzed redox reactions with a pH-dependent mechanism for the hydrogen-evolving reaction. It is proposed that hydrogen atom combination on the catalyst surface is the rate-limiting step at pH 4.40, whereas at pH 3.05 diffusion of MV2+4 is rate limiting and hydrogen evolution proceeds via the electrochemical reaction between a surface-adsorbed hydrogen atom and a solution-phase proton.
Resumo:
The skin penetration enhancement effect of ultrasound (phonophoresis) on methyl nicotinate was investigated in 10 healthy volunteers in a double-blind, placebo-controlled, crossover clinical trial. Each treatment consisted of the application of ultrasound massage (3.0 MHz, 1.0 W/cm2 continuous output) or placebo massage (0 MHz) for 5 min to the forearms of the volunteers, followed by a standardized application of methyl nicotinate at intervals of 15 sec, 1 min, and 2 min postmassage. Percutaneous absorption of methyl nicotinate was monitored using laser Doppler velocimetry. Ultrasound treatment applied prior to methyl nicotinate led to enhanced percutaneous absorption of the drug, for example, ultrasound treatment data versus control data at 2 min showed significant increases (P