72 resultados para Local food systems
Resumo:
We examined variability in hierarchical beta diversity across ecosystems, geographical gradients, and organism groups using multivariate spatial mixed modeling analysis of two independent data sets. The larger data set comprised reported ratios of regional species richness (RSR) to local species richness (LSR) and the second data set consisted of RSR: LSR ratios derived from nested species-area relationships. There was a negative, albeit relatively weak, relationship between beta diversity and latitude. We found only relatively subtle differences in beta diversity among the realms, yet beta diversity was lower in marine systems than in terrestrial or freshwater realms. Beta diversity varied significantly among organisms' major characteristics such as body mass, trophic position, and dispersal type in the larger data set. Organisms that disperse via seeds had highest beta diversity, and passively dispersed organisms showed the lowest beta diversity. Furthermore, autotrophs had lower beta diversity than organisms higher up the food web; omnivores and carnivores had consistently higher beta diversity. This is evidence that beta diversity is simultaneously controlled by extrinsic factors related to geography and environment, and by intrinsic factors related to organism characteristics.
Resumo:
If cities are to become more sustainable and resilient to change it is likely that they will have to engage with food at increasingly localised levels, in order to reduce their dependency on global systems. With 87 percent of people in developed regions estimated to be living in cities by 2050 it can be assumed that the majority of this localised production will occur in and around cities. As part of a 12 month engagement, Queen’s University Belfast designed and implemented an elevated aquaponic food system spanning the top internal floor and exterior roof space of a disused mill in Manchester, England. The experimental aquaponic system was developed to explore the possibilities and difficulties associated with integrating food production with existing buildings. This paper utilises empirical research regarding crop growth from the elevated aquaponic system and extrapolates the findings across a whole city. The resulting research enables the agricultural productive capacity of today’s cities to be estimated and a framework of implementation to be proposed.
Resumo:
If cities are to become more sustainable and resilient to change it is likely that they will have to engage with food at increasingly localised levels, in order to reduce their dependancy on global systems. With 87 percent of developed regions estimated to be living in cities by 2050 it can be assumed that the majority of this localised production will occur in and around cities.
As part of a 12 month engagement, Queen’s University Belfast designed and implemented an elevated aquaponic food system spanning the top floor and exterior roof space of a disused mill in Manchester, England. The experimental aquaponic system was developed to explore the possibilities and difficulties associated with containing fish tanks, filtration units, vertical growing systems and roof top growing systems within and upon existing buildings, including the structural considerations needed when undertaking such transformations. Although capable of producing 4000 crops at any one time, the elevated aquaponic system utilised space within the existing building, which could otherwise be used as lettable area, and also located some crop growth within the building where light levels are reduced.
The following paper takes the research collected from the elevated aquaponic system and extrapolates the findings across a whole city. The resulting research enables the agricultural productive capacity of todays cities to be determined and a frame work of implementation to be developed for city wide food production. The research focuses specifically on facade and roof based systems, thus elevating the need to utilise lettable area within cities in addition to locating crops where light levels are highest.
Resumo:
Systematic principal component analysis (PCA) methods are presented in this paper for reliable islanding detection for power systems with significant penetration of distributed generations (DGs), where synchrophasors recorded by Phasor Measurement Units (PMUs) are used for system monitoring. Existing islanding detection methods such as Rate-of-change-of frequency (ROCOF) and Vector Shift are fast for processing local information, however with the growth in installed capacity of DGs, they suffer from several drawbacks. Incumbent genset islanding detection cannot distinguish a system wide disturbance from an islanding event, leading to mal-operation. The problem is even more significant when the grid does not have sufficient inertia to limit frequency divergences in the system fault/stress due to the high penetration of DGs. To tackle such problems, this paper introduces PCA methods for islanding detection. Simple control chart is established for intuitive visualization of the transients. A Recursive PCA (RPCA) scheme is proposed as a reliable extension of the PCA method to reduce the false alarms for time-varying process. To further reduce the computational burden, the approximate linear dependence condition (ALDC) errors are calculated to update the associated PCA model. The proposed PCA and RPCA methods are verified by detecting abnormal transients occurring in the UK utility network.
Resumo:
A new approach to determine the local boundary of voltage stability region in a cut-set power space (CVSR) is presented. Power flow tracing is first used to determine the generator-load pair most sensitive to each branch in the interface. The generator-load pairs are then used to realize accurate small disturbances by controlling the branch power flow in increasing and decreasing directions to obtain new equilibrium points around the initial equilibrium point. And, continuous power flow is used starting from such new points to get the corresponding critical points around the initial critical point on the CVSR boundary. Then a hyperplane cross the initial critical point can be calculated by solving a set of linear algebraic equations. Finally, the presented method is validated by some systems, including New England 39-bus system, IEEE 118-bus system, and EPRI-1000 bus system. It can be revealed that the method is computationally more efficient and has less approximation error. It provides a useful approach for power system online voltage stability monitoring and assessment. This work is supported by National Natural Science Foundation of China (No. 50707019), Special Fund of the National Basic Research Program of China (No. 2009CB219701), Foundation for the Author of National Excellent Doctoral Dissertation of PR China (No. 200439), Tianjin Municipal Science and Technology Development Program (No. 09JCZDJC25000), National Major Project of Scientific and Technical Supporting Programs of China During the 11th Five-year Plan Period (No. 2006BAJ03A06). ©2009 State Grid Electric Power Research Institute Press.
Resumo:
This paper describes how urban agriculture differs from conventional agriculture not only in the way it engages with the technologies of growing, but also in the choice of crop and the way these are brought to market. The authors propose a new model for understanding these new relationships, which is analogous to a systems view of information technology, namely Hardware-Software- Interface.
The first component of the system is hardware. This is the technological component of the agricultural system. Technology is often thought of as equipment, but its linguistic roots are in ‘technis’ which means ‘know how’. Urban agriculture has to engage new technologies, ones that deal with the scale of operation and its context which is different than rural agriculture. Often the scale is very small, and soils are polluted. There this technology in agriculture could be technical such as aquaponic systems, or could be soil-based agriculture such as allotments, window-boxes, or permaculture. The choice of method does not necessarily determine the crop produced or its efficiency. This is linked to the biotic that is added to the hardware, which is seen as the ‘software’.
The software of the system are the ecological parts of the system. These produce the crop which may or may not be determined by the technology used. For example, a hydroponic system could produce a range of crops, or even fish or edible flowers. Software choice can be driven by ideological preferences such as permaculture, where companion planting is used to reduce disease and pests, or by economic factors such as the local market at a particular time of the year. The monetary value of the ‘software’ is determined by the market. Obviously small, locally produced crops are unlikely to compete against intensive products produced globally, however the value locally might be measured in different ways, and might be sold on a different market. This leads to the final part of the analogy - interface.
The interface is the link between the system and the consumer. In traditional agriculture, there is a tenuous link between the producer of asparagus in Peru and the consumer in Europe. In fact very little of the money spent by the consumer ever reaches the grower. Most of the money is spent on refrigeration, transport and profit for agents and supermarket chains. Local or hyper-local agriculture needs to bypass or circumvent these systems, and be connected more directly to the consumer. This is the interface. In hyper-localised systems effectiveness is often more important than efficiency, and direct links between producer and consumer create new economies.
Resumo:
Recent studies predict elevated and accelerating rates of species extinctions over the 21st century, due to climate change and habitat loss. Considering that such primary species loss may initiate cascades of secondary extinctions and push systems towards critical tipping points, we urgently need to increase our understanding of if certain sequences of species extinctions can be expected to be more devastating than others Most theoretical studies addressing this question have used a topological (non-dynamical) approach to analyse the probability that food webs will collapse, below a fixed threshold value in species richness, when subjected to different sequences of species loss. Typically, these studies have neither considered the possibility of dynamical responses of species, nor that conclusions may depend on the value of the collapse threshold. Here we analyse how sensitive conclusions on the importance of different species are to the threshold value of food web collapse. Using dynamical simulations, where we expose model food webs to a range of extinction sequences, we evaluate the reliability of the most frequently used index, R<inf>50</inf>, as a measure of food web robustness. In general, we find that R<inf>50</inf> is a reliable measure and that identification of destructive deletion sequences is fairly robust, within a moderate range of collapse thresholds. At the same time, however, focusing on R<inf>50</inf> only hides a lot of interesting information on the disassembly process and can, in some cases, lead to incorrect conclusions on the relative importance of species in food webs.
Resumo:
Conducting atomic force microscopy images of bulk semiconducting BaTiO3 surfaces show clear stripe domain contrast. High local conductance correlates with strong out-of-plane polarization (mapped independently using piezoresponse force microscopy), and current- voltage characteristics are consistent with dipole-induced alterations in Schottky barriers at the metallic tip-ferroelectric interface. Indeed, analyzing current-voltage data in terms of established Schottky barrier models allows relative variations in the surface polarization, and hence the local domain structure, to be determined. Fitting also reveals the signature of surface-related depolarizing fields concentrated near domain walls. Domain information obtained from mapping local conductance appears to be more surface-sensitive than that from piezoresponse force microscopy. In the right materials systems, local current mapping could therefore represent a useful complementary technique for evaluating polarization and local electric fields with nanoscale resolution.
Resumo:
Over the past few decades, there has been an increased frequency and duration of cyanobacterial Harmful Algal Blooms (HABs) in freshwater systems globally. These can produce secondary metabolites called cyanotoxins, many of which are hepatotoxins, raising concerns about repeated exposure through ingestion of contaminated drinking water or food or through recreational activities such as bathing/ swimming. An ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) multi-toxin method has been developed and validated for freshwater cyanotoxins; microcystins-LR, -YR, -RR, -LA, -LY and -LF, nodularin, cylindrospermopsin, anatoxin-a and the marine diatom toxin domoic acid. Separation was achieved in around 9 min and dual SPE was incorporated providing detection limits of between 0.3 and 5.6 ng/L of original sample. Intra- and inter-day precision analysis showed relative
standard deviations (RSD) of 1.2–9.6% and 1.3–12.0% respectively. The method was applied to the analysis of aquatic samples (n = 206) from six European countries. The main class detected were the hepatotoxins; microcystin-YR (n = 22), cylindrospermopsin (n = 25), microcystin-RR (n = 17), microcystin-LR (n = 12), microcystin-LY (n = 1), microcystin-LF (n = 1) and nodularin (n = 5). For microcystins, the levels detected ranged from 0.001 to 1.51 mg/L, with two samples showing combined levels above the guideline set by the WHO of 1 mg/L for microcystin-LR. Several samples presented with multiple toxins indicating the potential for synergistic effects and possibly enhanced toxicity. This is the first published pan European survey of freshwater bodies for multiple biotoxins, including two identified for the first time; cylindrospermopsin in Ireland and nodularin in Germany, presenting further incentives for improved monitoring and development of strategies to mitigate human exposure.
Resumo:
When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system’s dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the infrom the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn, we determine both the sky-projected (λ ≈ −0.4 ± 0.2◦) and true 3D obliquity (ψ ≈ 7+12 −4 ◦ ). We also find good agreement with the MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful with the next generation of high-precision radial velocity spectrographs.
Resumo:
We extend the generalized Langevin equation (GLE) method [L. Stella, C. D. Lorenz, and L. Kantorovich, Phys. Rev. B 89, 134303 (2014)] to model a central classical region connected to two realistic thermal baths at two different temperatures. In such nonequilibrium conditions a heat flow is established, via the central system, in between the two baths. The GLE-2B (GLE two baths) scheme permits us to have a realistic description of both the dissipative central system and its surrounding baths. Following the original GLE approach, the extended Langevin dynamics scheme is modified to take into account two sets of auxiliary degrees of freedom corresponding to the mapping of the vibrational properties of each bath. These auxiliary variables are then used to solve the non-Markovian dissipative dynamics of the central region. The resulting algorithm is used to study a model of a short Al nanowire connected to two baths. The results of the simulations using the GLE-2B approach are compared to the results of other simulations that were carried out using standard thermostatting approaches (based on Markovian Langevin and Nosé-Hoover thermostats). We concentrate on the steady-state regime and study the establishment of a local temperature profile within the system. The conditions for obtaining a flat profile or a temperature gradient are examined in detail, in agreement with earlier studies. The results show that the GLE-2B approach is able to treat, within a single scheme, two widely different thermal transport regimes, i.e., ballistic systems, with no temperature gradient, and diffusive systems with a temperature gradient.