64 resultados para Listening Center
Resumo:
This paper explores a recent, broadly 'electroacoustic', fixed medium composition by Tullis Rennie, which uses his background in ethnographic fieldwork to explore (in this case through auto-ethnography) modes of listening, and the role of technologies in mediating this listening. Muscle Memory: A conversation about jazz, with Graham South (trumpet) (2014) begins to answer questions about how one work can comment on and analyse or critique another through its own agency as music, bringing composition and ethnography together in fruitful collision, and illuminating the human capacity to manipulate and be manipulated by musical activity. The paper uses the piece to test the extent to which four functions, identified by Simon Frith (1987. Towards an aesthetic of popular music. In R. Leppert & S. McClary (Eds.), Music and society (pp. 133-49). Cambridge: Cambridge University Press) as crucial to the meaningfulness of popular music may, in the context of ubiquitously technologised music, have broader application than he originally intended.
Resumo:
bservations of the Rossiter–McLaughlin (RM) effect provide information on star–planet alignments, which can inform planetary migration and evolution theories. Here, we go beyond the classical RM modeling and explore the impact of a convective blueshift that varies across the stellar disk and non-Gaussian stellar photospheric profiles. We simulated an aligned hot Jupiter with a four-day orbit about a Sun-like star and injected center-to-limb velocity (and profile shape) variations based on radiative 3D magnetohydrodynamic simulations of solar surface convection. The residuals between our modeling and classical RM modeling were dependent on the intrinsic profile width and v sin i; the amplitude of the residuals increased with increasing v sin i and with decreasing intrinsic profile width. For slowly rotating stars the center-to-limb convective variation dominated the residuals (with amplitudes of 10 s of cm s−1 to ~1 m s−1); however, for faster rotating stars the dominant residual signature was due a non-Gaussian intrinsic profile (with amplitudes from 0.5 to 9 m s−1). When the impact factor was 0, neglecting to account for the convective center-to-limb variation led to an uncertainty in the obliquity of ~10°–20°, even though the true v sin i was known. Additionally, neglecting to properly model an asymmetric intrinsic profile had a greater impact for more rapidly rotating stars (e.g., v sin i = 6 km s−1) and caused systematic errors on the order of ~20° in the measured obliquities. Hence, neglecting the impact of stellar surface convection may bias star–planet alignment measurements and consequently theories on planetary migration and evolution.