114 resultados para Lemhi Range
Resumo:
It is generally accepted that the reservoir hosts of cowpox virus are wild rodents, although direct evidence for this is lacking for much of the virus's geographic range. Here, through a combination of serology and PCR, we demonstrate conclusively that the main hosts in Great Britain are bank voles, wood mice and short-tailed field voles. However, we also suggest that wood mice may not be able to maintain infection alone, explaining the absence of cowpox from Ireland where voles are generally not found. Infection in wild rodents varies seasonally, and this variation probably underlies the marked seasonal incidence of infection in accidental hosts such as humans and domestic cats.
Resumo:
Thin Al foils (50 nm and 6 mu m) were irradiated at intensities of up to 2x10(19) W cm(-2) using high contrast (10(8)) laser pulses. Ion emission from the rear of the targets was measured using a scintillator-based Thomson parabola and beam sampling 'footprint' monitor. The variation of the ion spectra and beam profile with focal spot size was systematically studied. The results show that while the maximum proton energy is achieved around tight focus for both target thicknesses, as the spot size increases the ion flux at lower energies is seen to peak at significantly increased spot sizes. Measurements of the proton footprint, however, show that the off-axis proton flux is highest at tight focus, indicating that a previously identified proton deflection mechanism may alter the on-axis spectrum. One-dimensional particle-in-cell modelling of the experiment supports our hypothesis that the observed change in spectra with focal spot size is due to the competition of two effects: decrease in laser intensity and an increase in proton emission area.
Resumo:
Proton imaging has become a common diagnostic technique for use in laser-plasma research experiments due to their ability to diagnose electric field effects and to resolve small density differences caused through shock effects. These interactions are highly dependent on the use of radiochromic film (RCF) as a detection system for the particle probe, and produces very high-resolution images. However, saturation effects, and in many cases, damage to the film limits the usefulness of this technique for high-flux particle probing. This paper outlines the use of a new technique using contact radiography of (p,n)-generated isotopes in activation samples to produce high dynamic range 2D images with high spatial resolution and extremely high dynamic range, whilst maintaining both energy resolution and absolute flux measurements. (C)007 Elsevier B.V. All rights reserved.
Resumo:
Invasive species pose a major threat to biodiversity but provide an opportunity to describe the processes that lead to changes in a species’ range. The bank vole (Myodes glareolus) is an invasive rodent that was introduced to Ireland in the early twentieth century. Given its continuing range expansion, the substantial empirical data on its spread thus far, and the absence of any eradication program, the bank vole in Ireland represents a unique model system for studying the mechanisms influencing the rate of range expansion in invasive small mammals. We described the invasion using a reaction–diffusion model informed by empirical data on life history traits and demographic parameters. We subsequently modelled the processes involved in its range expansion using a rule-based spatially explicit simulation. Habitat suitability interacted with density-dependent parameters to influence dispersal, most notably the density at which local populations started to donate emigrating individuals, the number of dispersing individuals and the direction of dispersal. Whilst local habitat variability influenced the rate of spread, on a larger scale the invasion resembled a simple reaction–diffusion process. Our results suggest a Type 1 range expansion where the rate of expansion is generally constant over time, but with some evidence for a lag period following introduction. We demonstrate that a two-parameter empirical model and a rule-based spatially explicit simulation are sufficient to accurately describe the invasion history of a species that exhibits a complex, density-dependent pattern of dispersal.