81 resultados para Lake, Gerald Lake 1st, viscount, 1744-1808.
Resumo:
Hulun Lake, China's fifth-largest inland lake, experienced severe declines in water level in the period of 2000-2010. This has prompted concerns whether the lake is drying up gradually. A multi-million US dollar engineering project to construct a water channel to transfer part of the river flow from a nearby river to maintain the water level was completed in August 2010. This study aimed to advance the understanding of the key processes controlling the lake water level variation over the last five decades, as well as investigate the impact of the river transfer engineering project on the water level. A water balance model was developed to investigate the lake water level variations over the last five decades, using hydrological and climatic data as well as satellite-based measurements and results from land surface modelling. The investigation reveals that the severe reduction of river discharge (-364±64 mm/yr, ∼70% of the five-decade average) into the lake was the key factor behind the decline of the lake water level between 2000 and 2010. The decline of river discharge was due to the reduction of total runoff from the lake watershed. This was a result of the reduction of soil moisture due to the decrease of precipitation (-49±45 mm/yr) over this period. The water budget calculation suggests that the groundwater component from the surrounding lake area as well as surface run off from the un-gauged area surrounding the lake contributed ∼ net 210 Mm3/yr (equivalent to ∼ 100 mm/yr) water inflows into the lake. The results also show that the water diversion project did prevent a further water level decline of over 0.5 m by the end of 2012. Overall, the monthly water balance model gave an excellent prediction of the lake water level fluctuation over the last five decades and can be a useful tool to manage lake water resources in the future.
Resumo:
This article presents a case study of Lower Lough Erne, a humic, alkaline lake in northwest Ireland, and uses the radiocarbon method to determine the source and age of carbon to establish whether terrestrial carbon is utilized by heterotrophic organisms or buried in sediment. Stepped combustion was used to estimate the degree of the burial of terrestrial carbon in surface sediment. ∆14C, δ13C, and δ15N values were measured for phytoplankton, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and particulate organic carbon (POC). ∆14C values were used to indicate the presence of different sources of carbon, including bedrock-derived inorganic carbon, “modern,” “recent,” “subsurface,” and “subfossil” terrestrial carbon in the lake. The use of 14C in conjunction with novel methods (e.g. stepped combustion) allows the determination of the pathway of terrestrial carbon in the system, which has implications for regional and global carbon cycling.
Hydroclimatic shifts in northeast Thailand during the last two millennia - the record of Lake Pa Kho
Resumo:
The Southeast Asian mainland is located in the central path of the Asian summer monsoon, a region where paleoclimatic data are still sparse. Here we present a multi-proxy (TOC, C/N, δ13C, biogenic silica, and XRF elemental data) study of a 1.5m sediment/peat sequence from Lake Pa Kho, northeast Thailand, which is supported by 20 AMS 14C ages. Hydroclimatic reconstructions for Pa Kho suggest a strengthened summer monsoon between BC 170-AD 370, AD 800-960, and after AD 1450; and a weakening of the summer monsoon between AD 370-800, and AD 1300-1450. Increased run-off and a higher nutrient supply after AD 1700 can be linked to agricultural intensification and land-use changes in the region. This study fills an important gap in data coverage with respect to summer monsoon variability over Southeast Asia during the past 2000 years and enables the mean position of the Intertropical Convergence Zone (ITCZ) to be inferred based on comparisons with other regional studies. Intervals of strengthened/weaker summer monsoon rainfall suggest that the mean position of the ITCZ was located as far north as 35°N between BC 170-AD 370 and AD 800-960, whereas it likely did not reach above 17°N during the drought intervals of AD 370-800 and AD 1300-1450. The spatial pattern of rainfall variation seems to have changed after AD 1450, when the inferred moisture history for Pa Kho indicates a more southerly location of the mean position of the summer ITCZ.
Resumo:
Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone.
Resumo:
Carbon (C) and nitrogen (N) stable isotope analysis (SIA) has been used to identify the terrestrial subsidy of freshwater food webs. However, SIA fails to differentiate between the contributions of old and recently fixed terrestrial C and consequently cannot fully determine the source, age, and biochemical quality of terrestrial carbon. Natural abundance radiocarbon (∆14C) was used to examine the age and origin of carbon in Lower Lough Erne, Northern Ireland. 14C and stable isotope values were obtained from invertebrate, algae, and fish samples, and the results indicate that terrestrial organic C is evident at all trophic levels. High winter δ15N values in calanoid zooplankton (δ15N = 24‰) relative to phytoplankton and particulate organic matter (δ15N = 6‰ and 12‰, respectively) may reflect several microbial trophic levels between terrestrial C and calanoid invertebrates. Winter and summer calanoid ∆14C values show a seasonal switch between autochthonous and terrestrial carbon sources. Fish ∆14C values indicate terrestrial support at the highest trophic levels in littoral and pelagic food webs. 14C therefore is useful in attributing the source of carbon in freshwater in addition to tracing the pathway of terrestrial carbon through the food web.
Resumo:
Kamchatka is one of the world’s most active volcanic regions and has hosted many explosive eruptions during the Holocene. These eruptions had the potential to disperse tephra over wide areas, forming time-synchronous markers wherever those tephras are found. Recent research in Kamchatka has begun to focus on the geochemical analysis of individual glass shards in order to characterise tephra layers. We have applied this approach to the study of visible tephras from three lakes – one in central and two in northern Kamchatka – with the aim of identifying key tephras and potential issues in the application of distal (>100 km from an active volcano) tephra in volcanically complex regions. In total, 23 tephras from 22 tephra beds have been geochemically analysed, representing products from at least four volcanic systems in Kamchatka. We demonstrate that distal lake sediments in the region can yield reliable tephrostratigraphies, capturing tephra from eruptions that have the greatest potential to disperse volcanic ash beyond the region. We draw attention to issues relating to correlating and distinguishing key marker horizons from the highly active Shiveluch Volcano, namely the need to ensure inter-lab comparability of geochemical data and good chronological control of the proximal and distal tephras. Importantly, we have also extended the known distribution of two key tephra isochrons from the Ksudach volcano. Our work contributes valuable glass geochemical on data several key marker beds that will facilitate future tephra and palaeoenvironmental research within and beyond Kamchatka.
Resumo:
A sediment record from a small lake in the north-eastern part of the Kamchatka Peninsula has been investigated in a multi-proxy study to gain knowledge of Holocene climatic and environmental change. Pollen, diatoms, chironomids and selected geochemical parameters were analysed and the sediment record was dated with radiocarbon. The study shows Holocene changes in the terrestrial vegetation as well as responses of the lake ecosystem to catchment maturity and multiple stressors, such as climate change and volcanic eruptions. Climate change is the major driving force resulting in the recorded environmental changes in the lake, although recurrent tephra deposition events also contributed. The sediment record has an age at the base of about 10,000 cal yrs BP, and during the first 400 years the climate was cold and the lake exhibited extensive ice-cover during winter and relatively low primary production. Soils in the catchment were poor with shrub alder and birches dominating the vegetation surrounding the lake. At about 9600–8900 cal yrs BP the climate was cold and moist, and strong seasonal wind stress resulted in reduced ice-cover and increased primary production. After ca. 8900 cal yrs BP the forest density increased around the lake, runoff decreased in a generally drier climate resulting in decreased primary production in the lake until ca. 7000 cal yrs BP. This generally dry climate was interrupted by a brief climatic perturbation, possibly attributed to the 8.2 ka event, indicating increasingly windy conditions with thick snow cover, reduced ice-cover and slightly elevated primary production in the lake. The diatom record shows maximum thermal stratification at ca. 6300–5800 cal yrs BP and indicates together with the geochemical proxies a dry and slightly warmer climate resulting in a high productive lake. The most remarkably change in the catchment vegetation occurred at ca. 4200 cal yrs BP in the form of a conspicuous increase in Siberian dwarf pine (Pinus pumila), indicating a shift to a cooler climate with a thicker and more long-lasting snow cover. This vegetational change was accompanied by marked shifts in the diatom and chironomid stratigraphies, which are also indicative of colder climate and more extensive ice-cover.
Resumo:
We present a pilot study that uses the radiocarbon (∆14C) method to determine the source of carbon buried in the surface sediment of Lough Erne, a humic, alkaline lake in northwest Ireland. ∆14C, δ13C and δ15N values were measured from phytoplankton, dissolved inorganic, dissolved organic and particulate organic carbon. A novel radiocarbon method, Stepped Combustion1 was used to estimate the degree of the burial of terrestrial carbon in surface sediment. The ∆14C values of the low temperature fractions were comparable to algal ∆14C, while the high temperature fractions were 14C-depleted (older than bulk sediment). The ∆14C end-member model indicated that ~64% of carbon in surface sediment was derived from detrital terrestrial carbon. The use of ∆14C in conjunction with stepped combustion allows the quantification of the pathways of terrestrial carbon in the system, which has implications for regional and global carbon burial.
1McGeehin, J., Burr, G.S., Jull, A.J.T., Reines, D., Gosse, J., Davis, P.T., Muhs, D., and Southon, J.R., 2001, Stepped-combustion C-14 dating of sediment: A comparison with established techniques: Radiocarbon, v. 43, p. 255-261.
Resumo:
Carbon and nitrogen stable isotope analysis (SIA) has identified the terrestrial subsidy of freshwater food-webs but relies on different 13C fractionation in aquatic and terrestrial primary producers. However dissolved inorganic carbon (DIC) is partly comprised of 13C depleted respiration of terrestrial C and ‘old’ C derived from weathering of catchment geology. SIA thus fails to differentiate between the contribution of old and recently fixed terrestrial C. DIC in alkaline lakes is partially derived from weathering of 14C-free carbonaceous bedrock This
yields an artificial age offset leading samples to appear significantly older than their actual age. As such, 14C can be used as a biomarker to identify the proportion of autochthonous C in the food-web. With terrestrial C inputs likely to increase, the origin and utilisation of ‘old’ or ‘recent’ allochthonous C in the food-web can also be determined. Stable isotopes and 14C were measured for biota, particulate organic matter (POM), DIC and dissolved organic carbon (DOC) from Lough Erne, Northern Ireland, a humic but alkaline lake. High winter δ15N values in calanoid zooplankton (δ15N =24‰) relative to phytoplankton and POM (δ15N =6‰ and 12‰ respectively) may reflect several microbial trophic levels between terrestrial C and calanoids. Furthermore winter calanoid 14C ages are consistent with DOC from inflowing rivers (87 and 75 years BP respectively) but not phytoplankton (355 years BP). Summer calanoid δ13N, δ15N and 14C (312 years BP) indicate greater reliance on phytoplankton. There is also temporal and spatial variation in DIC, DOC and POM C isotopes.
Resumo:
New independent dating evidence is presented for a lacustrine record for which an age-depth model had already been derived through the interpretation of the pollen signal. Quartz OSL ages support radiocarbon ages that were previously considered to suffer an underestimation due to contamination, and imply a younger chronology for the core. The successful identification of the Campanian Ignimbrite as a cryptotephra within the core also validates this younger chronology, as well as extending the known geographical range of this tephra layer within Italy. These new results suggest that care should always be taken when building chronologies from proxy records that are correlated to the tuned records from which the global signal is often derived (i.e. double tuning). We do not offer this as the definitive chronology for Lake Fimon, but multiple lines of dating evidence show that there is sufficient reason to seriously consider it. The Quaternary dating community should always have all age information available, even when significant temporal offsets are apparent between various lines of evidence to be: 1) better informed when they face similar dilemmas in the future and 2) allow multiple working hypotheses to be considered.
Resumo:
Globally lakes bury and remineralise significant quantities of terrestrial C, and the associated flux of terrestrial C strongly influences their functioning. Changing deposition chemistry, land use and climate induced impacts on hydrology will affect soil biogeochemistry and terrestrial C export1 and hence lake ecology with potential feedbacks for regional and global C cycling. C and nitrogen stable isotope analysis (SIA) has identified the terrestrial subsidy of freshwater food webs. The approach relies on different 13C fractionation in aquatic and terrestrial primary producers, but also that inorganic C demands of aquatic primary producers are partly met by 13C depleted C from respiration of terrestrial C, and ‘old’ C derived from weathering of catchment geology. SIA thus fails to differentiate between the contributions of old and recently fixed terrestrial C. Natural abundance 14C can be used as an additional biomarker to untangle riverine food webs2 where aquatic and terrestrial δ 13C overlap, but may also be valuable for examining the age and origin of C in the lake. Primary production in lakes is based on dissolved inorganic C (DIC). DIC in alkaline lakes is partially derived from weathering of carbonaceous bedrock, a proportion of which is14C-free. The low 14C activity yields an artificial age offset leading samples to appear hundreds to thousands of years older than their actual age. As such, 14C can be used to identify the proportion of autochthonous C in the food-web. With terrestrial C inputs likely to increase, the origin and utilisation of ‘fossil’ or ‘recent’ allochthonous C in the food-web can also be determined. Stable isotopes and 14C were measured for biota, particulate organic matter (POM), DIC and dissolved organic carbon (DOC) from Lough Erne, Northern Ireland, a humic alkaline lake. Temporal and spatial variation was evident in DIC, DOC and POM C isotopes with implications for the fluctuation in terrestrial export processes. Ramped pyrolysis of lake surface sediment indicates the burial of two C components. 14C activity (507 ± 30 BP) of sediment combusted at 400˚C was consistent with algal values and younger than bulk sediment values (1097 ± 30 BP). The sample was subsequently combusted at 850˚C, yielding 14C values (1471 ± 30 BP) older than the bulk sediment age, suggesting that fossil terrestrial carbon is also buried in the sediment. Stable isotopes in the food web indicate that terrestrial organic C is also utilised by lake organisms. High winter δ 15N values in calanoid zooplankton (δ 15N = 24%¸) relative to phytoplankton and POM (δ 15N = 6h and 12h respectively) may reflect several microbial trophic levels between terrestrial C and calanoids. Furthermore winter calanoid 14C ages are consistent with DOC from an inflowing river (75 ± 24 BP), not phytoplankton (367 ± 70 BP). Summer calanoid δ 13C, δ 15N and 14C (345 ± 80 BP) indicate greater reliance on phytoplankton.
1 Monteith, D.T et al., (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450:537-535
2 Caraco, N., et al.,(2010) Millennial-aged organic carbon subsidies to a modern river food web. Ecology,91: 2385-2393.