145 resultados para LOW-ENERGY ELECTRONS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two techniques are described to calculate energy densities for the bell, gonad and oral arm tissues of three scyphozoan jellyfish (Cyanea capillata, Rhizostoma octopus and Chrysaora hysoscella). First, bomb-calorimetry was used, a technique that is readily available and inexpensive. However, the reliability of this technique for gelatinous material is contentious. Second, further analysis involving the more labour intensive proximate-composition analysis (protein, fat and carbohydrate) was carried out on two species (C capillata and R. octopus). These proximate data were subsequently converted to energy densities. The two techniques (bomb-calorimetry and proximate-composition) gave very similar estimates of energy density. Differences in energy density were found both amongst different species and between different tissues of the same species. Mean ( +/- S.D.) energy density estimates for whole animals from bomb-calorimetry were 0.18 +/- 0.05, 0.11 +/- 0.04, and 0.10 +/- 0.03 kJ g wet mass(-1) for C. capillata, R. octopus, and C. hysoscella respectively. The implications of these low energy densities for species feeding on jellyfish are discussed. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present adaptive optics imaging of the core-collapse supernova (SN) 2009md, which we use together with archival Hubble Space Telescope data to identify a coincident progenitor candidate. We find the progenitor to have an absolute magnitude of V=-4.63+0.3-0.4 mag and a colour of V-I= 2.29+0.25-0.39 mag, corresponding to a progenitor luminosity of log L/L?similar to 4.54 +/- 0.19 dex. Using the stellar evolution code STARS, we find this to be consistent with a red supergiant progenitor with M= 8.5+6.5-1.5 M?. The photometric and spectroscopic evolution of SN 2009md is similar to that of the class of sub-luminous Type IIP SNe; in this paper we compare the evolution of SN 2009md primarily to that of the sub-luminous SN 2005cs. We estimate the mass of 56Ni ejected in the explosion to be (5.4 +/- 1.3) x 10-3 M? from the luminosity on the radioactive tail, which is in agreement with the low 56Ni masses estimated for other sub-luminous Type IIP SNe. From the light curve and spectra, we show the SN explosion had a lower energy and ejecta mass than the normal Type IIP SN 1999em. We discuss problems with stellar evolutionary models, and the discrepancy between low observed progenitor luminosities (log L/L?similar to 4.35 dex) and model luminosities after the second dredge-up for stars in this mass range, and consider an enhanced carbon burning rate as a possible solution. In conclusion, SN 2009md is a faint SN arising from the collapse of a progenitor close to the lower mass limit for core collapse. This is now the third discovery of a low-mass progenitor star producing a low-energy explosion and low 56Ni ejected mass, which indicates that such events arise from the lowest end of the mass range that produces a core-collapse SN (78 M?).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Very collimated bunches of high energy electrons have been produced by focusing super-intense femtosecond laser pulses in submillimeter under-dense plasmas. The density of the plasma, preformed with the laser exploding-foil technique, was mapped using Nomarski interferometry. The electron beam was fully characterized: up to 10(9) electrons per shot were accelerated, most of which in a beam of aperture below 10(-3) sterad, with energies up to 40 MeV. These measurements, which are well modeled by three-dimensional numerical simulations, validate a reliable method to generate ultrashort and ultracollimated electron bunches. (C) 2002 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interaction of an ultraintense, 30-fs laser pulse with a preformed plasma was investigated as a method of producing a beam of high-energy electrons. We used thin foil targets that are exploded by the laser amplified spontaneous emission preceding the main pulse. Optical diagnostics show that the main pulse interacts with a plasma whose density is well below the critical density. By varying the foil thickness, we were able to obtain a substantial emission of electrons in a narrow cone along the laser direction with a typical energy well above the laser ponderomotive potential. These results are explained in terms of wake-field acceleration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spectra of ?-ray Doppler shifts for positron annihilation in benzene and its fluoro-derivatives are simulated using low energy plane wave positron (LEPWP) approximation. The results are compared with available measurements. It is found that the Doppler shifts in these larger aromatic compounds are dominated by the contributions of the valence electrons and that the LEPWP model overestimates the measurements by approximately 30%, in agreement with previous findings in noble gases and small molecules. It is further revealed that the halogen atoms not only switch the sign of the charges on carbon atoms that they bond to, but that they also polarize other C-H bonds in the molecule leading to a redistribution of the molecular electrostatic potentials. As a result, it is likely that the halogen atoms contribute more significantly to the annihilation process. The present study also suggests that, while the Doppler shifts are sensitive to the number of valence electrons in the molecules, they are less sensitive to the chemical structures of isomers that have the same numbers and type of atoms and, hence, the same numbers of electrons. Further investigation of this effect is warranted. © EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2012.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new approach is proposed for exploring the low-energy structures of small to medium-sized aggregates of atoms and molecules. This approach uses the recently proposed reconnaissance metadynamics method [G. A. Tribello, M. Ceriotti, and M. Parrinello. Proc. Natl. Acad. Sci. U.S.A. 107(41), 17509 (2010)] in tandem with collective variables that describe the average structure of the coordination sphere around the atoms/molecules. We demonstrate this method on both Lennard-Jones and water clusters and show how it is able to quickly find the global minimum in the potential energy surface, while exploring the finite temperature free energy surface. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3628676]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is concerned with assessing the building’s the energy efficiency and qualities of a modular design for the education industry, in order assess the long economic benefits. The research includes a life-cycle energy and cost analysis of the school building design, predicting the impact on the operational cost of the building as a result of the addition of photovoltaic panels. The paper also includes a comparative study between the ECO Modular Solutions building, and a current standard prefabricated school building, quantifying the savings in CO2 emissions and savings in cost.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structural, thermal, chemisorptive, and electronic properties of Ce on Pt{111} are studied by photoemission, Auger spectroscopy, scanning tunnel microscope (STM), and low-energy electron diffraction (LEED). Stranski-Krastanov-like growth of low-density Ce layers is accompanied by substantial valence charge transfer from Ce to Pt: in line with this, the measured dipole moment and polarizability of adsorbed Ce at low coverages are 7.2 x 10(-30) C m and similar to 1.3x10(-29) m(3), respectively. Pt-Ce intermixing commences at similar to 400 K and with increasing temperature a sequence of five different ordered surface alloys evolves. The symmetry, periodicities, and rotational epitaxy observed by LEED are in good accord with the STM data which reveal the true complexity of the system. The Various bimetallic surface phases are based on growth of crystalline Pt5Ce, a hexagonal layer structure consisting of alternating layers of Pt2Ce and Kagome nets of Pt atoms. This characteristic ABAB layered arrangement of the surface alloys is clearly imaged, and chemisorption data permit a distinction to be made between the more reactive Pt2Ce layer and the less reactive Pt Kagome net. Either type of layer can appear at the surface as the terminating structure, thicker films exhibiting unit mesh parameters characteristic of the bulk alloy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A modification to the standard Thomson parabola spectrometer is discussed, which is designed to measure high energy (tens of MeV/nucleon), broad bandwidth spectra of multi-species ions accelerated by intense laser plasma interactions. It is proposed to implement a pair of extended, trapezoidal shaped electric plates, which will not only resolve ion traces at high energies, but will also retain the lower energy part of the spectrum. While a longer (along the axis of the undeflected ion beam direction) electric plate design provides effective charge state separation at the high energy end of the spectrum, the proposed new trapezoidal shape will enable the low energy ions to reach the detector, which would have been clipped or blocked by simply extending the rectangular plates to enhance the electrostatic deflection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a recent article (J. Am. Chem. Soc. 2011, 133, 20186) we investigated the initial spatial distribution of dry excess electrons in a series of room-temperature ionic liquids (RTILs). Perhaps unexpectedly, we found that in some alkylammonium-based systems the excess negative charge resided on anions and not on the positive cations. Following on these results, in the current paper we describe the time evolution of an excess electronic charge introduced in alkylammonium- and pyrrolidinium-based ionic liquids coupled with the bis(trifluoromethylsulfonyl)amide ([TfN]) anion. We find that on a 50 fs time scale an initially delocalized excess electron localizes on a single [TfN] anion which begins a fragmentation process. Low-energy transitions have a very different physical origin on the several femtoseconds time scale when compared to what occurs on the picosecond time scale. At time zero, these are intraband transitions of the excess electron. However after 40 fs when the excess electronic charge localizes on a single anion, these transitions disappear, and the spectrum is dominated by electron-transfer transitions between the fragments of the doubly charged breaking anion. © 2013 American Chemical Society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A pseudopotential for positronium-atom interaction, based on electron-atom and positron-atom phase shifts, is constructed, and the phase shifts for Ps-Kr and Ps-Ar scattering are calculated. This approach allows us to extend the Ps-atom cross sections, obtained previously in the impulse approximation [I. I. Fabrikant and G. F. Gribakin, Phys. Rev. Lett. 112, 243201 (2014)], to energies below the Ps ionization threshold. Although experimental data are not available in this low-energy region, our results describe well the tendency of the measured cross sections to drop with decreasing velocity at v < 1 a.u. Our results show that the effect of the Ps-atom van der Waals interaction is weak compared to the polarization interaction in electron-atom and positron-atom scattering. As a result, the Ps scattering length for both Ar and Kr is positive, and the Ramsauer-Townsend minimum is not observed for Ps scattering from these targets. This makes Ps scattering quite different from electron scattering in the low-energy region, in contrast to the intermediate energy range from the Ps ionization threshold up to v ∼ 2 a.u., where the two are similar.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interaction of a stream of high-energy electrons with the background plasma plays an important role in the astrophysical phenomena such as interplanetary and stellar bow shock and Earth's foreshock emission. It is not yet fully understood how electrostatic solitary waves are produced at the bow shock. Interestingly, a population of energetic suprathermal electrons were also found to exist in those environments. Previously, we have studied the properties of negative electrostatic potential solitary structures exist in such a plasma with excess suprathermal electrons. In the present study, we investigate the existence conditions and propagation properties of electron-acoustic solitary waves in a plasma consisting of an electron beam fluid, a cold electron fluid, and hot suprathermal electrons modeled by a kappa-distribution function. The Sagdeev pseudopotential method was used to investigate the occurrence of stationary-profile solitary waves. We have determined how the electron-acoustic soliton characteristics depend on the electron beam parameters. It is found that the existence domain for solitons becomes narrower with an increase in the suprathermality of hot electrons, increasing the beam speed, decreasing the beam-to-cold electron population ratio. These results lead to a better understanding of the formation of electron-acoustic solitary waves observed in those space plasma systems characterized by kappa-distributed electrons and inertial drifting (beam) electrons.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

EU targets require nearly zero energy buildings (NZEB) by 2020. However few monitored examples exist of how NZEB has been achieved in practise in individual residential buildings. This paper provides an example of how a low-energy building (built in 2006), has achieved nearly zero energy heating through the addition of a solar domestic hot water and space heating system (“combi system”) with a Seasonal Thermal Energy Store (STES). The paper also presents a cumulative life cycle energy and cumulative life cycle carbon analysis for the installation based on the recorded DHW and space heating demand in addition to energy payback periods and net energy ratios. In addition, the carbon and energy analysis is carried out for four other heating system scenarios including hybrid solar thermal/PV systems in order to obtain the optimal system from a carbon efficiency perspective.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple method to enhance ion generation with femtosecond ultraintense lasers is demonstrated experimentally by defocusing laser beams on target surface. When the laser is optimally defocused, we find that the population of medium and low energy protons from ultra-thin foils is increased significantly while the proton cutoff energy is almost unchanged. In this way, the total proton yield can be enhanced by more than 1 order, even though the peak laser intensity drops. The depression of the amplified spontaneous emission (ASE) effect and the population increase of moderate-energy electrons are believed to be the main reasons for the effective enhancement. © 2012 American Institute of Physics.