75 resultados para LIPOPROTEINS
Resumo:
Oxidation and glycation of low-density lipoprotein (LDL) promote vascular injury in diabetes; however, the mechanisms underlying this effect remain poorly defined. The present study was conducted to determine the effects of 'heavily oxidized' glycated LDL (HOG-LDL) on endothelial nitric oxide synthase (eNOS) function. Exposure of bovine aortic endothelial cells with HOG-LDL reduced eNOS protein levels in a concentration- and time-dependent manner, without altering eNOS mRNA levels. Reduced eNOS protein levels were accompanied by an increase in intracellular Ca(2+), augmented production of reactive oxygen species (ROS) and induction of Ca(2+)-dependent calpain activity. Neither eNOS reduction nor any of these other effects were observed in cells exposed to native LDL. Reduction of intracellular Ca(2+) levels abolished eNOS reduction by HOG-LDL, as did pharmacological or genetic through calcium channel blockers or calcium chelator BAPTA or inhibition of NAD(P)H oxidase (with apocynin) or inhibition of calpain (calpain 1-specific siRNA). Consistent with these results, HOG-LDL impaired acetylcholine-induced endothelium-dependent vasorelaxation of isolated mouse aortas, and pharmacological inhibition of calpain prevented this effect. HOG-LDL may impair endothelial function by inducing calpain-mediated eNOS degradation in a ROS- and Ca(2+)-dependent manner.
Resumo:
Two novel mutations were identified in a compound heterozygous male with lecithin:cholesterol acyltransferase (LCAT) deficiency. Exon sequence determination of the LCAT gene of the proband revealed two novel heterozygous mutations in exons one (C110T) and six (C991T) that predict non-conservative amino acid substitutions (Thr13Met and Pro307Ser, respectively). To assess the distinct functional impact of the separate mutant alleles, studies were conducted in the proband's 3-generation pedigree. The compound heterozygous proband had negligible HDL and severely reduced apolipoprotein A-I, LCAT mass, LCAT activity, and cholesterol esterification rate (CER). The proband's mother and two sisters were heterozygous for the Pro307Ser mutation and had low HDL, markedly reduced LCAT activity and CER, and the propensity for significant reductions in LCAT protein mass. The proband's father and two daughters were heterozygous for the Thr13Met mutation and also displayed low HDL, reduced LCAT activity and CER, and more modest decrements in LCAT mass. Mean LCAT specific activity was severely impaired in the compound heterozygous proband and was reduced by 50% in individuals heterozygous for either mutation, compared to wild type family members. It is also shown that the two mutations impair both catalytic activity and expression of the circulating protein.
Resumo:
PURPOSE: The authors investigated the receptor-mediated endocytosis (RME) and intracellular trafficking of insulin and low-density lipoprotein (LDL) in cultured retinal vascular endothelial cells (RVECs). METHODS: Low-density lipoprotein and insulin were conjugated to 10 nm colloidal gold, and these ligands were added to cultured bovine RVECs for 20 minutes at 4 degrees C. The cultures were then warmed to 37 degrees C and fixed after incubation times between 30 seconds and 1 hour. Control cells were incubated with unconjugated gold colloid at times and concentrations similar to those of the ligands. Additional control cells were exposed to several concentrations of anti-insulin receptor antibody or a saturating solution of unconjugated insulin before incubation with gold insulin. RESULTS: Using transmission electron microscopy, insulin gold and LDL gold were both observed at various stages of RME. Insulin-gold particles were first seen to bind to the apical plasma membrane (PM) before clustering in clathrin-coated pits and internalization in coated vesicles. Gold was later visualized in uncoated cytoplasmic vesicles, corresponding to early endosomes and multivesicular bodies (MVBs) or late endosomes. In several instances, localized regions of the limiting membrane of the MVBs appeared coated, a feature of endosomal membranes not previously described. After RME at the apical PM and passage through the endosomal system, the greater part of both insulin- and LDL-gold conjugates was seen to accumulate in large lysosome-like compartments. However, a small but significant proportion of the internalized ligands was transcytosed and released as discrete membrane-associated quanta at the basal cell surface. The uptake of LDL gold was greatly increased in highly vacuolated, late-passage RVECs. In controls, anti-insulin receptor antibody and excess unconjugated insulin caused up to 89% inhibition in gold-insulin binding and internalization. CONCLUSION: These results illustrate the internalization and intracellular trafficking by RVECs of insulin and LDL through highly efficient RME, and they provide evidence for at least two possible fates for the endocytosed ligands. This study outlines a route by which vital macromolecules may cross the inner blood-retinal barrier.
Resumo:
BACKGROUND: In adults, obesity-driven inflammation can lead to increased cardiovascular disease (CVD). However, information regarding childhood obesity and its inflammatory sequelae is less well defined. Serum amyloid-A (SAA) is an inflammatory molecule that rapidly associates with high-density lipoproteins (HDLs) and renders them dysfunctional. Therefore, SAA may be a useful biomarker to identify increased CVD potential in overweight and obese children.
METHODS: Young Hearts 2000 is a cross-sectional cohort study in which 92 children who were obese were matched for age and sex with 92 overweight and 92 lean children. HDL2 and HDL3 (HDL2&3) were isolated from plasma by a three-step rapid-ultracentrifugation procedure. SAA was measured in serum and HDL2&3 by an enzyme-linked immunosorbent assay procedure, and the activities of cholesterol ester transfer protein (CETP) and lecithin cholesteryl acyltransferase (LCAT) were measured by fluorimetric assays.
RESULTS: Trends across the groups indicated that SAA increased in serum and HDL2&3 as BMI increased, as did HDL2-CETP and HDL2-LCAT activities.
CONCLUSION: These results have provided evidence that overweight and obese children are exposed to an inflammatory milieu that impacts the antiatherogenic properties of HDL and that could increase CVD risk. This supports the concept that it is important to target childhood obesity to help minimize future cardiovascular events.
Resumo:
Introduction: High density lipoproteins (HDL) have considerable potential for improving cardiovascular health. Additionally, epidemiological studies have identified an inverse relationship between a-tocopherol intake and cardiovascular disease, which has not been translated in randomised controlled trials. Objectives: This study assessed if increased α-tocopherol within HDL2 and HDL3 (HDL2&3) influenced their antiatherogenic potential. In the first of two in vitro investigations, the oxidation potential of HDL2&3 was assessed when α-tocopherol was added following their isolation. In the second, their oxidation potential was assessed when HDL2&3 were isolated from serum pre-incubated with α-tocopherol. Additionally, a 6-week placebo-controlled intervention with α-tocopherol assessed if α-tocopherol influenced the oxidation potential and activities of HDL2&3-associated enzymes, paraoxonase-1 (PON-1) and lecithin cholesteryl acyltransferase (LCAT). Results: Conflicting results arose from the in vitro investigations, whereby increasing concentrations of α-tocopherol protected HDL2&3 against oxidation in the post-incubated HDL2&3, and promoted HDL2&3-oxidation when they were isolated from serum pre-incubated with α-tocopherol. Following the 6-week placebo-controlled investigation, α-tocopherol increased in HDL2&3, while HDL2&3 became more susceptible to oxidation, additionally the activities of HDL2&3-PON-1 and HDL2-LCAT decreased. Conclusion: These results have shown for the first time that α-tocopherol induces changes to HDL2&3, which could contribute to the pathophysiology of cardiovascular disease.
Resumo:
OBJECTIVE - To describe and compare the associations of serum lipoproteins and apolipoproteins with diabetic retinopathy. RESEARCH DESIGN AND METHODS - This was a cross-sectional study of 224 diabetic patients (85 type 1 and 139 type 2) froma diabetes clinic. Diabetic retinopathy was graded from fundus photographs according to the Airlie House Classification system and categorized into mild, moderate, and vision-threatening diabetic retinopathy (VTDR). Serum traditional lipids (total, LDL, non-HDL, and HDL cholesterol and triglycerides) and apolipoprotein AI (apoAI), apolipoprotein B (apoB), and the apoB-to-apoAI ratio were assessed. RESULTS - Diabetic retinopathy was present in 133 (59.4%) individuals. After adjustment for age, sex, diabetes duration, A1C, systolic blood pressure, and diabetes medications, the HDL cholesterol level was inversely associated with diabetic retinopathy (odds ratio 0.39 [95% CI 0.16-0.94], highest versus lowest quartile; P = 0.017). The ApoAI level was inversely associated with diabetic retinopathy (per SD increase, 0.76 [95% CI 0.59-0.98]), whereas apoB (per SD increase, 1.31 [1.02-1.68]) and the apoB-to-apoAI ratio (per SD increase, 1.48 [1.13-1.95]) were positively associated with diabetic retinopathy. Results were similar for mild to moderate diabetic retinopathy and VTDR. Traditional lipid levels improved the area under the receiver operating curve by 1.8%, whereas apolipoproteins improved the area by 8.2%. CONCLUSIONS - ApoAI and apoB and the apoB-to-apoAI ratio were significantly and independently associated with diabetic retinopathy and diabetic retinopathy severity and improved the ability to discriminate diabetic retinopathy by 8%. Serum apolipoprotein levels may therefore be stronger biomarkers of diabetic retinopathy than traditional lipid measures. © 2011 by the American Diabetes Association.
Resumo:
Alcohol-induced liver injury is the most common liver disease in which fatty acid metabolism is altered. It is thought that altered NAD+/NADH redox potential by alcohol in the liver causes fatty liver by inhibiting fatty acid oxidation and the activity of tricarboxylic acid cycle reactions. β-Lapachone (βL), a naturally occurring quinone, has been shown to stimulate fatty acid oxidation in an obese mouse model by activating adenosine monophosphate-activated protein kinase (AMPK). In this report, we clearly show that βL reduced alcohol-induced hepatic steatosis and induced fatty acid oxidizing capacity in ethanol-fed rats. βL treatment markedly decreased hepatic lipids while serum levels of lipids and lipoproteins were increased in rats fed ethanol-containing liquid diets with βL administration. Furthermore, inhibition of lipolysis, enhancement of lipid mobilization to mitochondria and upregulation of mitochondrial β-oxidation activity in the soleus muscle were observed in ethanol/βL-treated animals compared to the ethanol-fed rats. In addition, the activity of alcohol dehydrogenase, but not aldehyde dehydrogenase, was significantly increased in rats fed βL diets. βL-mediated modulation of NAD+/NADH ratio led to the activation of AMPK signaling in these animals. Conclusion: Our results suggest that improvement of fatty liver by βL administration is mediated by the upregulation of apoB100 synthesis and lipid mobilization from the liver as well as the direct involvement of βL on NAD+/NADH ratio changes, resulting in the activation of AMPK signaling and PPARα-mediated β-oxidation. Therefore, βL-mediated alteration of NAD+/NADH redox potential may be of potential therapeutic benefit in the clinical setting.
Resumo:
Background
High density lipoproteins (HDL) have many cardioprotective roles; however, in subjects with type 2 diabetes (T2D) these cardioprotective properties are diminished. Conversely, increased fruit and vegetable (F&V) intake may reduce cardiovascular disease risk, although direct trial evidence of a mechanism by which this occurs in subjects with T2D is lacking. Therefore, the aim of this study was to examine if increased F&V consumption influenced the carotenoid content and enzymes associated with the antioxidant properties of HDL in subjects with T2D.
MethodsEighty obese subjects with T2D were randomised to a 1- or ≥6-portion/day F&V diet for 8-weeks. Fasting serum was collected pre- and post-intervention. HDL was subfractionated into HDL2 and HDL3 by rapid ultracentrifugation. Carotenoids were measured in serum, HDL2 and HDL3 by high performance liquid chromatography. The activity of paraoxonase-1 (PON-1) was measured in serum, HDL2 and HDL3 by a spectrophotometric assay, while the activity of lecithin cholesterol acyltransferase (LCAT) was measured in serum, HDL2 and HDL3 by a fluorometric assay.
ResultsIn the ≥6- vs. 1-portion post-intervention comparisons, carotenoids increased in serum, HDL2 and particularly HDL3, (α-carotene, p = 0.008; β-cryptoxanthin, p = 0.042; lutein, p = 0.012; lycopene, p = 0.016), as did the activities of PON-1 and LCAT in HDL3 (p = 0.006 and 0.044, respectively).
ConclusionTo our knowledge, this is the first study in subjects with T2D to demonstrate that increased F&V intake augmented the carotenoid content and influenced enzymes associated with the antioxidant properties of HDL. We suggest that these changes would enhance the cardioprotective properties of this lipoprotein.
Resumo:
Resumo:
Purpose: This pilot study was aimed to establish techniques for assessing and observing trends in endothelial function, antioxidant status and vascular compliance in newly diagnosed HFE haemochromatosis during the first year of venesection.
Patients/methods: Untreated newly diagnosed HFE haemochromatosis patients were tested for baseline liver function, iron indices, lipid profile, markers of endothelial function, anti-oxidant status and vascular compliance. Following baseline assessment, subjects attended at 6-weeks and at 3, 6, 9 and 12-months for follow-up studies.
Results: Ten patients were recruited (M = 8, F = 2, mean age = 51 years). Venesection significantly increased high density lipoproteins at 12-months (1.25 mmol/L vs. 1.37 mmol/L, p = 0.01). However, venesection did not significantly affect lipid hydroperoxides, intracellular and vascular cell adhesion molecules or high sensitivity C-reactive protein (0.57 mu mol/L vs. 0.51 mu mol/L, p = 0.45, 427.4 ng/ml vs. 307.22 ng/ml, p = 0.54, 517.70 ng/ml vs. 377.50 ng/ml, p = 0.51 and 290.75 mu g/dL vs. 224.26 mu g/dL, p = 0.25). There was also no significant effect of venesection on anti-oxidant status or pulse wave velocity (9.65 m/s vs. 8.74 m/s, p = 0.34).
Conclusions: Venesection significantly reduced high density lipoproteins but was not associated with significant changes in endothelial function, anti-oxidant status or vascular compliance. Larger studies using this established methodology are required to clarify this relationship further.
Resumo:
Epidemiological studies suggest a relationship between blood lipids and immune-mediated diseases, but the nature of these associations is not well understood. We used genome-wide association studies (GWAS) to investigate shared single nucleotide polymorphisms (SNPs) between blood lipids and immune-mediated diseases. We analyzed data from GWAS (n~200,000 individuals), applying new False Discovery Rate (FDR) methods, to investigate genetic overlap between blood lipid levels [triglycerides (TG), low density lipoproteins (LDL), high density lipoproteins (HDL)] and a selection of archetypal immune-mediated diseases (Crohn's disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, psoriasis and sarcoidosis). We found significant polygenic pleiotropy between the blood lipids and all the investigated immune-mediated diseases. We discovered several shared risk loci between the immune-mediated diseases and TG (n = 88), LDL (n = 87) and HDL (n = 52). Three-way analyses differentiated the pattern of pleiotropy among the immune-mediated diseases. The new pleiotropic loci increased the number of functional gene network nodes representing blood lipid loci by 40%. Pathway analyses implicated several novel shared mechanisms for immune pathogenesis and lipid biology, including glycosphingolipid synthesis (e.g. FUT2) and intestinal host-microbe interactions (e.g. ATG16L1). We demonstrate a shared genetic basis for blood lipids and immune-mediated diseases independent of environmental factors. Our findings provide novel mechanistic insights into dyslipidemia and immune-mediated diseases and may have implications for therapeutic trials involving lipid-lowering and anti-inflammatory agents.
Resumo:
BACKGROUND: High density lipoproteins (HDL) protect against cardiovascular disease (CVD). However, increased serum amyloid-A (SAA) related inflammation may negate this property. This study investigated if SAA was related to CVD-burden.
METHODS: Subjects referred to the rapid chest pain clinic (n = 240) had atherosclerotic burden assessed by cardiac computerised tomography angiography. Subjects were classified as: no-CVD (n = 106), non-obstructive-CVD, stenosis<50% (n = 58) or moderate/significant-CVD, stenosis ≥50% (n = 76). HDL was subfractionated into HDL2 and HDL3 by rapid-ultracentrifugation. SAA-concentration was measured by ELISA and lecithin cholesterol acyltransferase (LCAT) activity measured by a fluorimetric assay.
RESULTS: We illustrated that serum-SAA and HDL3-SAA-concentration were higher and HDL3-LCAT-activity lower in the moderate/significant-CVD-group, compared to the no-CVD and non-obstructive-CVD-groups (percent differences: serum-SAA, +33% & +30%: HDL3-SAA, +65% and +39%: HDL3-LCAT, -6% & -3%; p < 0.05 for all comparisons). We also identified a positive correlation between serum-SAA and HDL3-SAA (r = 0.698; p < 0.001) and a negative correlation between HDL3-SAA and HDL3-LCAT-activity (r = -0.295; p = 0.003), while CVD-burden positively correlated with serum-SAA (r = 0.150; p < 0.05) and HDL3-SAA (r = 0.252; p < 0.001) and negatively correlated with HDL3-LCAT-activity (r = -0.182; p = 0.006). Additionally, multivariate regression analysis adjusted for age, gender, CRP and serum-SAA illustrated that HDL3-SAA was significantly associated with modifying CVD-risk of moderate/significant CVD-risk (p < 0.05).
CONCLUSION: This study has demonstrated increased SAA-related inflammation in subjects with moderate/significant CVD-burden, which appeared to impact on the antiatherogenic potential of HDL. We suggest that SAA may be a useful biomarker to illustrate increased CVD-burden, although this requires further investigation.
Resumo:
Topic: A systematic review and meta-analysis of dyslipidemia and diabetic macular edema (DME).
Clinical Relevance: Diabetic macular edema causes impairment of vision in patients with diabetes, and dyslipidemia has been reported as a risk factor for its development. A systematic review with a meta-analysis was undertaken to examine the evidence of an association between dyslipidemia and DME.
Methods: We defined eligibility criteria as randomized controlled trials (RCTs) and cohort, case-control, and cross-sectional studies reporting on the relationship between blood lipid levels and DME. We performed a literature search in MEDLINE, PubMed, and Embase from inception to September 2014. We used the NewcastleeOttawa scale to assess the quality of case-control, cross-sectional, and cohort studies, and the Cochrane risk of bias tool for RCTs.
Results: The search strategy identified 4959 publications. After screening, we selected 21 articles for review (5 cross-sectional, 5 cohort, 7 case-control, and 4 RCTs). Meta-analysis of case-control studies revealed that mean levels of total serum cholesterol (TC), low-density lipoproteins (LDLs), and serum triglycerides (TGs) were significantly higher in patients with DME compared with those without DME (TC: 30.08; 95% confidence interval [CI], 21.14e39.02; P < 0.001; LDL: 18.62; 95% CI, 5.80e31.43; P < 0.05; TG: 24.82; 95% CI, 9.21e40.42; P < 0.05). Meta-analysis of RCTs did not show significant risk in worsening of hard exudates and severity of DME in the lipid-lowering group compared with placebo (hard exudates: relative risk, 1.00; 95% CI, 0.47e2.11; P ¼ 1.00; DME: relative risk, 1.18; 95% CI, 0.75e1.86; P ¼ 0.48).
Conclusions: Despite evidence from the cohort studies and meta-analysis of the case-control studies suggesting a strong relationship between lipid levels and DME, this was not confirmed by the meta-analysis that included only prospective RCTs. Therefore, given the significant public health relevance of the topic, the relationship between lipid levels and DME deserves further investigation.
Resumo:
Type 1 diabetes (T1DM) is associated with increased risk of macrovascular complications. We examined longitudinal associations of serum conventional lipids and nuclear magnetic resonance (NMR)-determined lipoprotein subclasses with carotid intima-media thickness (IMT) in adults with T1DM (n=455) enrolled in the Diabetes Control and Complications Trial (DCCT). Data on serum lipids and lipoproteins were collected at DCCT baseline (1983-89) and were correlated with common and internal carotid IMT determined by ultrasonography during the observational follow-up of the DCCT, the Epidemiology of Diabetes Interventions and Complications (EDIC) study, at EDIC 'Year 1' (199-1996) and EDIC 'Year 6' (1998-2000). This article contains data on the associations of DCCT baseline lipoprotein profiles (NMR-based VLDL & chylomicrons, IDL/LDL and HDL subclasses and 'conventional' total, LDL-, HDL-, non-HDL-cholesterol and triglycerides) with carotid IMT at EDIC Years 1 and 6, stratified by gender. The data are supplemental to our original research article describing detailed associations of DCCT baseline lipids and lipoprotein profiles with EDIC Year 12 carotid IMT (Basu et al. in press) [1].
Resumo:
Lipoprotein-associated phospholipase A2 (Lp-PLA2) hydrolyses oxidized low-density lipoproteins into proinflammatory products, which can have detrimental effects on vascular function. As a specific inhibitor of Lp-PLA2, darapladib has been shown to be protective against atherogenesis and vascular leakage in diabetic and hypercholesterolemic animal models. This study has investigated whether Lp-PLA2 and its major enzymatic product, lysophosphatidylcholine (LPC), are involved in blood-retinal barrier (BRB) damage during diabetic retinopathy. We assessed BRB protection in diabetic rats through use of species-specific analogs of darapladib. Systemic Lp-PLA2 inhibition using SB-435495 at 10 mg/kg (i.p.) effectively suppressed BRB breakdown in streptozotocin-diabetic Brown Norway rats. This inhibitory effect was comparable to intravitreal VEGF neutralization, and the protection against BRB dysfunction was additive when both targets were inhibited simultaneously. Mechanistic studies in primary brain and retinal microvascular endothelial cells, as well as occluded rat pial microvessels, showed that luminal but not abluminal LPC potently induced permeability, and that this required signaling by the VEGF receptor 2 (VEGFR2). Taken together, this study demonstrates that Lp-PLA2 inhibition can effectively prevent diabetes-mediated BRB dysfunction and that LPC impacts on the retinal vascular endothelium to induce vasopermeability via VEGFR2. Thus, Lp-PLA2 may be a useful therapeutic target for patients with diabetic macular edema (DME), perhaps in combination with currently administered anti-VEGF agents.