119 resultados para Kinetic wave energy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper demonstrates the unparalleled value of full scale data which has been acquired from ocean trials of Aquamarine Power’s Oyster 800 Wave Energy Converter (WEC) at the European Marine Energy Centre (EMEC), Orkney, Scotland.
High quality prototype and wave data were simultaneously recorded in over 750 distinct sea states (comprising different wave height, wave period and tidal height combinations) and include periods of operation where the hydraulic Power Take-Off (PTO) system was both pressurised (damped operation) and de-pressurised (undamped operation).
A detailed model-prototype correlation procedure is presented where the full scale prototype behaviour is compared to predictions from both experimental and numerical modelling techniques via a high temporal resolution wave-by-wave reconstruction. This unquestionably provides the definitive verification of the capabilities of such research techniques and facilitates a robust and meaningful uncertainty analysis to be performed on their outputs.
The importance of a good data capture methodology, both in terms of handling and accuracy is also presented. The techniques and procedures implemented by Aquamarine Power for real-time data management are discussed, including lessons learned on the instrumentation and infrastructure required to collect high-value data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abandonment of farming systems on upland areas in southwest Britain during the Late Bronze Age – some 3000 years ago – is widely considered a ‘classic’ demonstration of the impact of deteriorating climate on the vulnerability of populations in such marginal environments. Here we test the hypothesis that climate change drove the abandonment of upland areas by developing new chronologies for human activity on upland areas during the Bronze Age across southwest Britain (Dartmoor, Exmoor and Bodmin Moor). We find Bronze Age activity in these areas spanned 3900–2950 calendar years ago with abandonment by 2900 calendar years ago. Holocene Irish bog and lake oak tree populations provide evidence of major shifts in hydroclimate across western Britain and Ireland, coincident with ice rafted debris layers recognized in North Atlantic marine sediments, indicating significant changes in the latitude and intensity of zonal atmospheric circulation across the region. We observe abandonment of upland areas in southwest Britain coinciding with a sustained period of extreme wet conditions that commenced 3100 calendar years ago. Our results are consistent with the view that climate change increased the vulnerability of these early farming communities and led to a less intensive use of such marginal environments across Britain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Attachment of free, low-energy electrons to dinitrobenzene (DNB) in the gas phase leads to DNB as well as several fragment anions. DNB, (DNB-H), (DNB-NO), (DNB-2NO), and (DNB-NO2) are found to undergo metastable (unimolecular) dissociation. A rich pattern of resonances in the yield of these metastable reactions versus electron energy is observed; some resonances are highly isomer-specific. Most metastable reactions are accompanied by large average kinetic energy releases (KER) that range from 0.5 to 1.32 eV, typical of complex rearrangement reactions, but (1,3-DNB-H)(-) features a resonance with a KER of only 0.06 eV for loss of NO. (1,3-DNB-NO)(-) offers a rare example of a sequential metastable reaction, namely, loss of NO followed by loss of CO to yield C5H4O- with a large KER of 1.32 eV. The G4(MP2) method is applied to compute adiabatic electron affinities and reaction energies for several of the observed metastable channels. (C) 2010 American Institute of Physics. [doi:10.1063/1.3514931]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Boundary layer transition estimation and modelling is essential for the design of many engineering products across many industries. In this paper, the Reynolds-averaged Navier–Stokes are solved in conjunction with three additional transport equations to model and predict boundary layer transition. The transition model (referred to as the kTkT–kLkL–ωω model) is based on the kk–ωω framework with an additional transport equation to incorporate the effects low-frequency flow oscillations in the form of a laminar kinetic energy (kLkL). Firstly, a number of rectifications are made to the original kTkT–kLkL–ωω framework in order to ensure an appropriate response to the free-stream turbulence level and to improve near wall predictions. Additionally, the model is extended to incorporate the capability to model transition due to surface irregularities in the form of backward-facing steps with maximum non-dimensional step sizes of approximately 1.5 times the local displacement thickness of the boundary layer where the irregularity is located (i.e k/δ∗⪅1.5k/δ∗⪅1.5) at upstream turbulence intensities in the range 0.01<Tu(%)<0.80.01<Tu(%)<0.8. A novel function is proposed to incorporate transition sensitivity due to aft-facing steps. This paper details the rationale behind the development of this new function and demonstrates its suitability for transition onset estimation on a flat plate at zero pressure gradient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims: We aim to calculate the kinetic, magnetic, thermal, and total energy densities and the flux of energy in axisymmetric sausage modes. The resulting equations should contain as few parameters as possible to facilitate applicability for different observations. 

Methods: The background equilibrium is a one-dimensional cylindrical flux tube model with a piecewise constant radial density profile. This enables us to use linearised magnetohydrodynamic equations to calculate the energy densities and the flux of energy for axisymmetric sausage modes. 

Results: The equations used to calculate the energy densities and the flux of energy in axisymmetric sausage modes depend on the radius of the flux tube, the equilibrium sound and Alfvén speeds, the density of the plasma, the period and phase speed of the wave, and the radial or longitudinal components of the Lagrangian displacement at the flux tube boundary. Approximate relations for limiting cases of propagating slow and fast sausage modes are also obtained. We also obtained the dispersive first-order correction term to the phase speed for both the fundamental slow body mode under coronal conditions and the slow surface mode under photospheric conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the most important factors that affects the performance of energy detection (ED) is the fading channel between the wireless nodes. This article investigates the performance of ED-based spectrum sensing, for cognitive radio (CR), over two-wave with diffuse power (TWDP) fading channels. The TWDP fading model characterizes a variety of fading channels, including well-known canonical fading distributions, such as Rayleigh and Rician, as well as worse than Rayleigh fading conditions modeled by the two-ray fading model. Novel analytic expressions for the average probability of detection over TWDP fading that account for single-user and cooperative spectrum sensing as well as square law selection diversity reception are derived. These expressions are used to analyze the behavior of ED-based spectrum sensing over moderate, severe and extreme fading conditions, and to investigate the use of cooperation and diversity as a means of mitigating the fading effects. Our results indicate that TWDP fading conditions can significantly degrade the sensing performance; however, it is shown that detection performance can be improved when cooperation and diversity are employed. The presented outcomes enable us to identify the limits of ED-based spectrum sensing and quantify the trade-offs between detection performance and energy efficiency for cognitive radio systems deployed within confined environments such as in-vehicular wireless networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design, construction and subsequent operation of the 75 kW oscillating water column wave power plant on the Isle of Islay has provided a significant insight into the practicality of wave power conversion. The development of wave power plant poses a significant design and construction challenge for not only civil but also mechanical and electrical engineers. The plant must withstand the immense forces imposed during storms, yet efficiently convert the slow cyclic motion of waves into a useful energy source such as electricity and do so at a price competitive with other forms of generation. In addition, the hostile marine environment hampers the construction process and the variability of the wave resource poses problems for electrical control and grid integration. Many sceptics consider wave power conversion to be too difficult, too expensive and too variable to justify the effort and expense necessary to develop this technology. However, the authors contend that with modular wave power systems developed from the practical experience gained with the Islay plant, wave power is a viable technology with a considerable world market potential. However, this technology is still at the early stages of development and will require the construction of a number of different prototypes before there is extensive commercial exploitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This note presents a simple model for prediction of liquid hold-up in two-phase horizontal pipe flow for the stratified roll wave (St+RW) flow regime. Liquid hold-up data for horizontal two-phase pipe flow [1, 2, 3, 4, 5 and 6] exhibit a steady increase with liquid velocity and a more dramatic fall with increasing gas rate as shown by Hand et al. [7 and 8] for example. In addition the liquid hold-up is reported to show an additional variation with pipe diameter. Generally, if the initial liquid rate for the no-gas flow condition gives a liquid height below the pipe centre line, the flow patterns pass successively through the stratified (St), stratified ripple (St+R), stratified roll wave, film plus droplet (F+D) and finally the annular (A+D, A+RW, A+BTS) regimes as the gas rate is increased. Hand et al. [7 and 8] have given a detailed description of this progression in flow regime development and definitions of the patterns involved. Despite the fact that there are over one hundred models which have been developed to predict liquid hold-up, none have been shown to be universally useful, while only a handful have proven to be applicable to specific flow regimes [9, 10, 11 and 12]. One of the most intractable regimes to predict has been the stratified roll wave pattern where the liquid hold-up shows the most dramatic change with gas flow rate. It has been suggested that the momentum balance-type models, which give both hold-up and pressure drop prediction, can predict universally for all flow regimes but particularly in the case of the difficult stratified roll wave pattern. Donnelly [1] recently demonstrated that the momentum balance models experienced some difficulties in the prediction of this regime. Without going into lengthy details, these models differ in the assumed friction factor or shear stress on the surfaces within the pipe particularly at the liquid–gas interface. The Baker–Jardine model [13] when tested against the 0.0454 m i.d. data of Nguyen [2] exhibited a wide scatter for both liquid hold-up and pressure drop as shown in Fig. 1. The Andritsos–Hanratty model [14] gave better prediction of pressure drop but a wide scatter for liquid hold-up estimation (cf. Fig. 2) when tested against the 0.0935 m i.d. data of Hand [5]. The Spedding–Hand model [15], shown in Fig. 3 against the data of Hand [5], gave improved performance but was still unsatisfactory with the prediction of hold-up for stratified-type flows. The MARS model of Grolman [6] gave better prediction of hold-up (cf. Fig. 4) but deterioration in the estimation of pressure drop when tested against the data of Nguyen [2]. Thus no method is available that will accurately predict liquid hold-up across the whole range of flow patterns but particularly for the stratified plus roll wavy regime. The position is particularly unfortunate since the stratified-type regimes are perhaps the most predominant pattern found in multiphase lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The triple differential cross sections for ionization of atomic hydrogen by electron impact are analysed in the case of coplanar, asymmetric geometry within the framework of second- order distorted wave theory. Detailed calculations are performed without making any approximations (other than numerical) in the evaluation of the second-order amplitude. The present results are compared with experimental measurements and other theoretical calculations for incident energies of 250, 150 and 54.4 eV. It is found that the second-order calculations represent a marked improvement over the results obtained from first-order theories for impact energies of 150 eV and higher. The close agreement between the present second-order plane wave calculation and those of Byron et al calculated using the closure approximation at an incident energy of 250 eV implies that the closure approximation is valid for this energy. The large difference between the present second-order distorted wave calculations and experiment at an incident energy of 54.4 eV suggests that higher order effects are important for incident energies less than 100 eV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scattering of electrons with kinetic energies down to a few meV by para-xylene and para-difluorobenzene has been observed experimentally with an electron beam energy resolution of 0.95 to 1.5 meV (full width half maximum). At low electron energies the collisions can be considered as cold scattering events because the de Broglie wavelength of the electron is considerably larger than the target dimensions. The scattering cross sections measured rise rapidly at low energy due to virtual state scattering. The nature of this scattering process is discussed using s- and p-wave phase shifts derived from the experimental data. Scattering lengths are derived of, respectively, -9.5+/-0.5 and -8.0+/-0.5 a.u. for para-xylene and para-difluorobenzene. The virtual state effect is interpreted in terms of nuclear diabatic and partially adiabatic models, involving the electronic and vibronic symmetries of the unoccupied orbitals in the target species. The concept of direct and indirect virtual state scattering is introduced, through which the present species, in common with carbon dioxide and benzene, scatter through an indirect virtual state process, whereas other species, such as perfluorobenzene, scatter through a direct process. (C) 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simple electron capture processes are studied using an orthonormal two state continuum-distorted-wave (CDW) basis. The suitability of the basis set is tested by comparing predictions for total and differential cross sections with available experimental data. Overall good agreement is obtained and the authors conclude that a relatively small CDW basis set may be suitable to model a wide variety of low-energy collisions if the members of this extended set are astutely chosen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple plane wave solution of the Schrodinger-Helmholtz equation is a quantum eigenfunction obeying both energy and linear momentum correspondence principles. Inclusion of the outgoing wave with scattering amplitude f asymptotic development of the plane wave, we show that there is a problem with angular momentum when we consider forward scattering at the point of closest approach and at large impact parameter given semiclassically by (l + 1/2)/k where l is the azimuthal quantum number and may be large (J. Leech et al., Phys. Rev. Lett. 88. 257901 (2002)). The problem is resolved via non- uniform, non-standard analysis involving the Heaviside step function, unifying classical, semiclassical and quantum mechanics, and the treatment is extended to the case of pure Coulomb scattering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continuum distorted-wave eikonal initial-state (CDW-EIS) theory of Crothers and McCann (J Phys B 1983, 16, 3229) used to describe ionization in ion-atom collisions is generalized (G) to GCDW-EIS to incorporate the azimuthal angle dependence of each CDW in the final-state wave function. This is accomplished by the analytic continuation of hydrogenic-like wave functions from below to above threshold, using parabolic coordinates and quantum numbers including magnetic quantum numbers, thus providing a more complete set of states. At impact energies lower than 25 keVu(-1), the total ionization cross-section falls off, with decreasing energy, too quickly in comparison with experimental data. The idea behind and motivation for the GCDW-EIS model is to improve the theory with respect to experiment by including contributions from nonzero magnetic quantum numbers. We also therefore incidentally provide a new derivation of the theory of continuum distorted waves for zero magnetic quantum numbers while simultaneously generalizing it. (C) 2004 Wiley Periodicals, Inc.